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Abstract

In this paper we show how a resource-oriented logic, separation logic, can be used to reason
about the usage of resources in concurrent programs.

1 Introduction

Resource has always been a central concern in concurrent programming. Often, a number of
processes share access to system resources such as memory, processor time, or network bandwidth,
and correct resource usage is essential for the overall working of a system. In the 1960s and 1970s
Dijkstra, Hoare and Brinch Hansen attacked the problem of resource control in their basic works on
concurrent programming [17, 18, 23, 24, 8 9]. In addition to the use of synchronization mechanisms
to provide protection from inconsistent use, they stressed the importance of resource separation
as a means of controlling the complexity of process interactions and reducing the possibility of
time-dependent errors. This paper revisits their ideas using the formalism of separation logic [43].

Our initial motivation was actually rather simple-minded. Separation logic extends Hoare’s
logic to programs that manipulate data structures with embedded pointers. The main primitive
of the logic is its separating conjunction, which allows local reasoning about the mutation of one
portion of state, in a way that automatically guarantees that other portions of the system’s state
remain unaffected [34]. Thus far separation logic has been applied to sequential code but, because
of the way it breaks state into chunks, it seemed as if the formalism might be well suited to
shared-variable concurrency, where one would like to assign different portions of state to different
processes.

Another motivation for this work comes from the perspective of general resource-oriented logics
such as linear logic [19] and BI [35]. Given the development of these logics it might seem natural
to try to apply them to the problem of reasoning about resources in concurrent programs. This
paper is one attempt to do so — separation logic’s assertion language is an instance of BI — but it
is certainly not a final story. Several limitations and directions for further work will be discussed
at the end of the paper.

There are a number of approaches to reasoning about imperative concurrent programs (e.g.,
[38, 40, 26]), but the ideas in an early paper of Hoare on concurrency, “Towards a Theory of Parallel
Programming [23]” (henceforth, TTPP), fit particularly well with the viewpoint of separation
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logic. The approach there revolves around a concept of “spatial separation” as a way to organize
thinking about concurrent processes, and to simplify reasoning. Based on compiler-enforceable
syntactic constraints for ensuring separation, Hoare described formal proof rules for shared-variable
concurrency that were beautifully modular: one could reason locally about a process, and simple
syntactic checks ensured that no other process could tamper with its state in a way that invalidated
the local reasoning.

So, the initial step in this work was just to insert the separating conjunction in appropriate
places in the TTPP proof rules, or rather, the extension of these rules studied by Owicki and Gries
[39]. Although the mere insertion of the separating conjunction was straightforward, it turned out
that the resulting proof rules contained two surprises, one positive and the other negative.

The negative surprise was a counterexample due to John Reynolds, which showed that the
rules were unsound if used without restriction. Difficulties showing soundness had delayed the
publication of the proof rules, which were first circulated in an unpublished note of the author
from August of 2001. After the counterexample came to light the author, Hongseok Yang and
Reynolds resolved a similar issue in a sequential programming language [37] by requiring certain
assertions in the proof rules to be “precise”; assertions are those that unambiguously pick out an
area of storage. In the present work precise assertions can again be used to salvage soundness,
as has been demonstrated by Brookes [12]. Reynolds’s counterexample, and the notion of precise
assertion, will be presented in Section 11.

The positive surprise was that we found we could handle a number of daring, though valuable,
programming idioms, and this opened up a number of unexpected (for us) possibilities. Typically,
the idioms involve the transfer of the ownership of, or right to access, a piece of state from one
process to another. This behaviour is common in systems programs, where limited resources are
shared amongst a collection of competing or cooperating processes. We say more on the nature of
the daring programs in Section 2.2 below.

The least expected result, which was never a conscious aim at the beginning, was that the
method turned out not to depend essentially on having a structured notation encapsulating high
level uses of synchronization constructs. For instance, we found we were able to reason in a
modular way about some semaphore idioms. The key to this is what we call the resource reading
of semaphores, where a semaphore is (logically) attached to a piece of state, and where pieces of
state flow dynamically between the semaphores and surrounding code when the P and V operations
are performed. The resource reading is described informally in Section 2.3, and more formally in
Sections 6 and 10.

The ability to deal with ownership transfer is a consequence of using a logical connective, the
separating conjunction, to describe resource partitions that change over time. This is in contrast to
the fixed partitioning that can be described by more static techniques such as scoping constraints
or typing.

This paper is very much about fluency with the logic — how to reason with it — rather than its
metatheory. A number of examples are given in some detail; proving particular programs is the
only way I know to probe whether a logic connects to, or alternatively is detached from, reasoning
intuition. A very simple example, parallel mergesort, is given in Section 3. It shows the basic
idea of independent reasoning about separate portions of memory, where the partition between
the portions is dynamically determined. A binary semaphore example is presented in Section 6,
where the global property that several sempahore values never add up to more than one (that we
have a “split binary semaphore”) is a consequence of purely local remarks about state attached to
each semaphore; we do not need to maintain a global invariant describing the relationship between
the different semaphore values. Sections 7 and 8 contain examples, a pointer-transferring buffer
and a toy memory manager, where ownership transfer is part of the interface specification of a
data abstraction. The buffer and the memory manager are then combined in Section 9) to bring
home the modularity aspect. Finally, the unbounded buffer of [17] is considered in Section 10. It
exhibits a stream of different pieces of state flowing through a single (counting) semaphore, and
also the possibility of working concurrently at both ends of the buffer.

The point we will attempt to demonstrate in each example is that the specification for each
program component is “local” or “self contained”, in that it concentrates on only the state used by



the component, not mentioning at all the states of other processes or resources [34]. This sense of
local reasoning is essential if we are ever to have reasoning methods that scale; of course, readers
will have to judge for themselves whether the specifications meet this aim.

We refer the reader to the companion paper by Stephen Brookes for a thorough theoretical
analysis [12]. Brookes gives a denotational model of the programming language with respect to
which he proves soundness of the proof rules. In addition to soundness, the analysis justifies many
of the remarks we make about the proof system during the course of the paper, such as remarks
about race conditions. The relation to Brookes’s work is detailed in Section 2.4 below.

2 Basic Principles

In the introduction above we acknowledge that this work unfolded not according to a fixed plan
but by the unexpected discovery of useful reasoning idioms. In this section we bring some system
to the discussion by describing the underlying ideas and issues in a non-technical way. As this
section is mainly about providing context for the work that follows some readers may wish to skip
or skim it, and refer back as necessary.

2.1 Racy and Race-free Programs

To begin with we assume a programming model where a number of concurrent processes share
access to a common state. The state may include program variables as well as a behind-the-scenes
heap component not all of whose addresses are named by program variables.

(Aside: since the processes we are talking about share the same address space they would be
called “threads” in Unix jargon.)

When processes share the same address space there is the possibility that they compete for
access to a portion of state.

A program is racy if two concurrent processes attempt to access the same portion of
state at the same time. Otherwise the program is race-free.

An example of a racy program is
r=y+zx | x:=xxz2

The meaning of this statement is dependent not only on the orderings of potential interleavings,
but even on the level of granularity of the operations.!

Race avoidance is an issue when processes compete for system resources, if these resources are
to be used in a consistent way. In this paper we will concentrate on competition for program state,
but the point is equally valid for other kinds of resource such as files, CPU timeslices, or network
bandwidth.

Most theories of concurrency do not attach any special significance to the disinction between
racy and race-free programs. But it is understood as significant by programmers. Races can
lead to irreproducible program behaviour which makes testing difficult. Stated more positively,
race-freedom frees us from thinking about minute details of interleavings, or even granularity, of
sequential programming constructs. For example, sequentially equivalent programs that can be
distinguished by concurrency are x := x4+ 1;z := x + 1 and x := z + 2. But the only way we can
see their inequivalence is through interference from another process, that is, by racing.

It is not that it is impossible, in principle, to describe the minute details of interleavings.
Rather, the aim of a program design is often to ensure that we don’t have to think about these
minute details. This is essentially the point of Dijkstra’s criterion of speed independence in his
principles for concurrent program design [17].

1In the Conclusion we discuss the relative nature of raciness, and how it is related tol granularity. See also John
Reynolds’s recent work which proposes that race-free programs can enjoy a semantics that is “grainless” [45].



2.2 Cautious and Daring Concurrency

We make some further assumptions. We suppose that there is a way to identify groupings of
mutual exclusion. A “mutual exclusion group” is a class of commands whose elements (or their
occurrences) are required not to overlap in their executions. Notice that there is no requirement of
atomicity; execution of commands not in the same mutual exclusion group might very well overlap.
In monitor-based concurrency each monitor determines a mutual exclusion group, consisting of
all calls to the monitor procedures. When programming with semaphores each semaphore s
determines a group, the pair of the semaphore operations P(s) and V(s). In TTPP the collection
of conditional critical regions withr when B do C' with common resource name r forms a mutual
exclusion group.
With this terminology we may now state one of the crucial distinctions in the paper.

A program is cautious if, whenever concurrent processes access the same piece of state, they
do so only within commands from the same mutual exclusion group. Otherwise, the program
is daring.

The simplicity and modularity of the TTPP proof rules is achieved by syntactic restrictions
which ensure caution. It is possible to program cautiously with pointers as well — for example, by
using a linked structure rather than an array to represent a queue — and then separation logic can
help. But the more significant way that separation logic will go beyond TTPP will be into the
realm of daring programs.

Examples of daring programs are many. Indeed, almost all semaphore programs are daring.
Brinch Hansen states the point with characteristic clarity:

Since a semaphore can be used to solve arbitrary synchronizing problems, a compiler
cannot conclude that a pair of wait and signal operations [P and V operations] on a
given semaphore initialized to one delimits a critical region, nor that a missing member
of such a pair is an error [10].

Now, semaphores are often used in a

P(mutex)
critical piece of code
V(mutex)

form, where the P’s and V’s for a given semaphore match in a properly nested fashion. In contrast,
for illustrative purposes, we will consider an unmatching idiom, where two processes share access
to address 10 and send signals to one another via two semaphores. (Recall that a semaphore
is represented by a non-negative integer, where V(s) bumps the value of s up by 1, and P(s)
decrements s by 1 whenever it is greater than 0, waiting otherwise.)

semaphore free := 1; busy := 0

i’(free); P( busy);

[10] := m; I n = [10];

V(busy); V(free);

The overall effect is that the left process assigns a message m to address 10 and then signals the
second process, which reads the message and then signals back to the sending process, perhaps to
send another message.?

20ur use of an address, 10, here rather than a program variable is something of an embarrassment. The reason
is that separation logic treats the heap more flexibly than ordinary variables in Hoare logic, so that a heap address,
but not a variable, can be transferred between threads. We say more on this in Remark 4 at the end of Section 6
and in Section 12.



This is a daring program according to our classification above because the accesses to address
10 are not within the units of mutual exclusion, which are the semaphores themselves. Of course,
the semaphore idiom is intended to implement mutual exclusion of the accesses to 10, but this
exclusion is not enforced on a language level. For example, we could initialize the semaphores
wrongly by, say, starting both at 1 in which case both processes would speed through their P(-)
operations and race for 10. (The issue here is analogous to how one can implement a procedure
call/return idiom in assembly language, where correct use of the idiom is not enforced by the
language.)

The skeptical reader might complain at this point that we could rewrite this code using con-
ditional critical regions or monitors, that it is, morally, cautious concurrency. While not wanting
to apologize for semaphores we would partially agree, but would also make two further points.

First, there are examples where the daring aspect — which has to do with accessing shared state
outside a unit of exclusion such as a critical region — is part of the very purpose of the program.
These arise when a pointer or other form of identification is passed into and out of a grouping of
mutual exclusion. A typical example is in efficient message passing, where a pointer is transferred
from one process to another in order to avoid copying large pieces of data, and one has to be
careful to avoid dereferencing the pointer at the wrong time. An example of this form is given in
Section 7.

Perhaps more vividly, resource managers of essentially any kind are daring. For instance,
interaction with a memory manager results in pieces of storage transferring between the manager
and its clients as allocation and deallocation operations are performed. Typically, a piece of state
will be used by one process, not within a unit of mutual exclusion, then returned to the manager
where it is temporarily protected by synchronization, and subsequently reallocated to another
process where it can again be accessed outside of a unit of mutual exclusion. If the first process
accesses the state after it has passed it back to the manager then unpredictable results may ensue.
An example of this form is given in Section 8.

Indeed, concurrent systems programs, such as microkernel OS designs or middleware code, are
almost always daring.

But to be daring is to court danger: If processes access the same portion of state outside
units of mutual exclusion then they just might do so at the same time, and we can very well get
inconsistent results. How might we be daring and yet consistent? If we can answer this question
then we might be able to reason about daring programs without accounting explicitly for the
possibility of interference or considering the minute details of possible interleavings.

2.3 Ownership and Separation
Our approach revolves around an interplay between two ideas: ownership and separation.

Ouwnership Hypothesis. A code fragment can access only those portions of state that
it owns.

This is a hypothesis in the sense that we are supposing that there is a notion of ownership for
which the statement makes sense. Ownership will be explained by example below, and described
technically by assertions in separation logic. We stress that ownership is not here required to be
part of the runtime model of a system, but rather is an additional notion we put on top of the
model, as an aid to reasoning.

The real point of the Ownership Hypothesis is that is enables us to state the

Separation Property. At any time, the state can be partitioned into that owned by
each process and each grouping of mutual exclusion.

The Separation Property is what allows independent reasoning about program components. The
job of our proof system will be to ensure that any program that gets past the proof rules satisfies
it.

A crucial point is that the Separation Property does not presume a static, once and for all,
partition of the state; it allows the partition to change over time. This can be made clear using



the snippet of daring semaphore code above (as long as the semaphores are properly initialized,
free to 1 and busy to 0). Here is the code again, this time annotated with assertions.

{enp) femp)

P(free); P(busy);
{10 — f} {10 — f}
[10] := m; I n = [10];
{10 — -} {10 — -}
V(busy); V(free);

{emp} {emp}

We will explain the assertions later but first give an informal narrative about this code.

The key to our discussion is what we call the resource reading of semaphores. In this reading
a semaphore is not just a device for counting or sending signals, but is additionally a resource
owner. Portions of state are attached to semaphores, in a logical way part of what they mean. At
any given time a semaphore owns a portion of state and the P and V operations transfer ownership
between the semaphore and the surrounding code. It is this (logical) attaching of resource to
semaphores, combined with ownership transfer, that will allow us to to reason modularly about
them.

The assertions in the code do not describe the linkage between each semaphore and address
10, the attached piece of state; the assertions describe instead local states from point of view
of the processes. Technically, in the proof theory there are invariants which describe when each
semaphore owns address 10. We do not want to descend into these technicalities at the moment (the
full proof will be given in Section 6), but instead want to concentrate on the intuitive understanding
of this code in terms of ownership and separation. So we continue with our narrative.

In the code above the job of a P(s) operation for a semaphore s is to release ownership of 10
into the code that follows, while V(s) acquires ownership of 10, swallowing it into s. (Notice the
curious inversion of the usual intuitive description of operations on binary semaphores as acquiring
and releasing locks.”) In this example the ownership for a semaphore is all-or-nothing, it owns 10
or it doesn’t, and it is always the same piece of state that is owned or not. In subtler examples
(e.g., Section 10) the semaphores can release and swallow up portions of state a little at a time
and different pieces of state can be owned at different times.

Returning to the example code above we will want to preserve the Separation Property through-
out our narrative; in particular, we will ensure that

address 10 is owned by exactly one of the left process, the right process, the free
semaphore or the busy semaphore

holds at all times. We assume that the property holds at the beginning, that 10 is owned by
free. In fact, both semaphores will satisfy an invariant which says “either my value is 1 and I own
address 10, or my value is 0 and I own nothing”.

Looking at the annotated code the command P(free) in the left process can be executed only
when the semaphore free owns address 10. On completion of the operation the semaphore gives
up ownership, releasing it in to the code that follows. In this way, ownership of 10 is assumed by
the left process before the command [10] := m. In fact, 10 must be owned at this point if we are
to be consistent with the Ownership Hypothesis. And this transfer of ownership from free into the
left process preserves the Separation Property. Continuing with the command V(busy), ownership
of 10 is then given up by the left process and swallowed up by the busy semaphore.

A similar narrative can be given for the righthand process. The point is that the V(busy)
command has the effect of busy assuming ownership of address 10, after which P(busy) can release
it before the address is read in the rightmost process. Similarly, V(free) in the right process swallows
ownership of 10, after which it can again be released into the leftmost process using P(free).



This narrative explains the sense in which ownership of 10 moves around, passing between
processes and semaphores, in a way that satisfies the Separation Property. Of course, there is
nothing operational which says that “ownership moves”; the semaphore operations themselves do
not mention 10 at all. This is the sense in which ownership is a conceptual add-on, which we put
on top of the runtime model for the purposes of understanding.

Now we turn our attention to the assertion annotations. We use the “ownership” or “permis-
sion” reading of separation logic, where an assertion P at a program point implies that “I have
the right to dereference the cells in P here”, or more briefly, “I own P” [37]. According to this
reading the assertion 10 — — says “I own the cell at address 10” (and I don’t own anything else).
The assertion emp does not say that the global state is empty, but rather that “I don’t own any
heap cells, here”.

With this reading of assertions the annotated code then mirrors our narrative. The triple
{emp}P(free){10 — —} corresponds to how ownership of 10 is released into the code in the left
process, and the use of emp in the postcondition of {10 — —}V(busy){emp} corresponds to the idea
that the first process gives up ownership of 10 when it executes the V operation.

We have now reached a point where our explanations can go no further without studying the
proof rules themselves. We hope, however, to have displayed the basic idea: if we can account for
transfer of ownership between program components then we can guarantee consistency of daring
programs.

2.4 Relation to Brookes’s Analysis

In addition to soundness, Brookes’s analysis in [12] justifies the remarks made in this section. In
particular, he shows that

if {P}C{Q} can be proven then any execution of C' starting from a state satisfying P
will not result in a race condition or an attempt to access a dangling pointer.

In our definition of racy programs we referred to processes accessing a portion of state at
the “same time”; we hope that the reader can understand this in an intuitive sense. We stress,
though, that it does not indicate a commitment to true concurrency. Indeed, Brookes’s formulation
uses an interleaving model where “same time” means one after the other without intervening
synchronization operations.

Brookes establishes an anologue of the Separation Property as part of his proof of soundness,
using a semantics that explicitly partitions heap cells. We warn the reader, however, that this is a
meta-property in the sense that we will never write a formula that describes it. Rather, the proof
rules are organized in a way that guarantees the property in an implicit way, as a result of the way
that proofs are constructed. The assertions we use for reasoning about processes will always be
local, in that they refer to the state of a resource or an individual process, whereas the Separation
Property is a global fact that is a consequence of the reasoning.

The most remarkable part of Brookes’s analysis is an interplay between an interleaving se-
mantics based on traces of actions and a “local enabling” relation that “executes” a trace in a
portion of state owned by a process. The enabling relation skips over intermediate states and
works by presuming that there is no “interference from the outside”. This presumption is vital
for the soundness of the sequential proof rules. For instance, we can readily derive

{10 — 3}z := [10]; 2 := [10]{(10 — 3) A = = 3}

in separation logic, but if there was outside interference, say altering the contents of 10 between the
first and second commands, then the triple would not be true. This presumption is also pertinent
to the discussion at the end of Section 2.1, about the usual inequivalence of z ==z + L;z:=x +1
and x := x + 2, a distinction that arises only from outside interference.

In the definitions of racy programs and the Separation Property we have not distinguished read
from write access; the informal definitions could be weakened to allow two processes to read the
same portion of state at the same time. In one part of Brookes’s analysis (the “global” semantics)



he allows for sharing of heap cells, while in another part (the “local” semantics) he does not. This
issue is related to the definition of the separating conjunction, which requires strict disjointness
of heap cells. The issue of shared read access to the heap is the subject of current research in
separation logic.

3 Disjoint Concurrency

Before considering process interaction it will be useful to have a warm-up session, with the special
case of disjoint concurrency. The presentation in this section will not be completely formal. It
is assumed, though, that the reader is familiar with the basics of separation logic. (The precise
syntax and semantics of assertions will be given in table 2 and in the appendix.) For now we
only remind the reader of two main points. First, P x () means that the (current, or owned) heap
can be split into two components, one of which makes P true and the other of which makes @)
true. Second, to reason about a dereferencing operation we must know that a cell exists in a
precondition. For instance, if {P}[10] := 42{Q} holds, where the command mutates address 10,
then P must imply the assertion 10 — — * true that 10 not be dangling.
The rule for disjoint concurrency is

{prciQr {Po{Q’s
{P+ PO C{Q+Q"}

where C does not modify any variables free in P’,C’,Q’, and conversely.
Consider the following putative triple:

{10 —}[10] := 42 || [10] := 6 {?77}.

The precondition says that address 10 points to something (it is not dangling) and, incidentally,
that there are no other cells in the heap. The two assignment commands mutate address 10, and
thus consitute a race condition.

We claim that there is no assertion we can find to fill in for the 7?7 and make this a derivable
triple. The reason is that, in separation logic we must know that 10 is not dangling to reason
about either of the two assignment commands. So, to reason about the constituent commands we
have to give 10 — — to each in its individual precondition. We cannot do that because we would
then have to use * to put these preconditions together, and that would result in falsity.

Stated more formally, to prove the program we would first have to split the precondition 10 — —
into two assertions P, P, where

10— - = P xP,.

Then we could use the rule of consequence to get the precondition into the form required by
the concurrency rule. But, to prove anything about the parallel commands, we must have the
implications

P, = 10— — % true P, = 10— — * true

because of the requirement that 10 not be dangling prior to an access to it. There is no way
to choose such assertions Py, P, because, if we could, then chaining together the implications we
would obtain

10 —— = (10— — x true) * (10 — — * true)

which simplifies to
10 —» — = false

and this final implication cannot hold.
This discussion is just a special case of a general fact established by Brookes, on race avoidance
for all proven programs.
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Vki<k<j=a+i—-—

sorted(a,i,7) 2 Vk.i<k<j=la+kl <[a+Ek+1]
[E]<[F] & 3ab.E—aAF—bAa<b
E—F 2 Ew Fxtrue

Table 1: Predicates for Mergesort

For a more positive example, we can prove a program that has a potential race, as long as that
race is ruled out by the precondition.

{x =3} 2] :=4{z —4}  {y— 3}y :=5{y—5}
{fz—=3xy—3}a]l =4[yl :=5{z— 4%y 5}

Here, the * in the precondition guarantees that x and y are not aliases.

It will be helpful to have an annotation notation for (the binary case of) the parallel composition
rule. We will use an annotation form where the overall precondition and postcondition come first
and last, vertically, and are broken up for the annotated constituent processes; so the just-given
proof is pictured

{z+3 %y 3}

{z — 3} {y— 3}
[z]:=4 || [yl:=5
{z— 4} {y — 5}

{r—4xy— 5}

Disjoint concurrency is restrictive, in that it does not allow for process interaction. But it is
not without its uses. Consider a parallel version of mergesort:

{array(a,i, j)}
procedure ms(a, i, j)
newvar m := (i +j)/2;
if 4 < j then
(ns{a,i,m) || ms(a,m+1,7));
merge(a,i,m + 1,75);
{sorted(a,i,j)}

For simplicity this specification just says that the final array is sorted, not that it is a permutation
of the initial array.

Array programs can be translated into separation logic by viewing ali] as sugar for [a + i].
Note that on this view a component assignment a[i] := E does not modify the variable a; rather,
it modifies address a + i. As a result, the merge and ms procedures do not alter any variables,
they only alter heap cells.

The assertion array(a,i,j) says that (at least) the segment from a+14 to a+ 7 is owned (in the
domain of the current heap), and sorted(a,i,j) says that that segment is sorted. The definitions
of these predicates may be found in Table 1.

The crucial part of the proof of the body is the following proof figure for the parallel compo-
sition.



SYNTAX

E F 2= x,9,...|0|1|E+F|EXxF|E—F (Integer Expressions)
B n= false|B=B|E=F|E<F (Boolean Expressions)
P,Q,R = Blemp|E—F|PxQ| (Assertions)
P=Q|Yx.P|---
ABBREVIATIONS

—-P = P = false; true = —(false); PV Q 2 (-P)=Q; PANQ@ £ —(=PV =Q);
A
Jx. P = —Vz. =P

Ew Fy,..,F, = (Ew— Fy) % (E+n— F,)
Ew— - 2 Jy.E—y (y ¢ Free(E))
Table 2: Assertions
{array(a,i,m) * array(a,m +1,7)}
{array(a,i,m)} {array(a,m + 1,7)}
ms(a, i,m) I ms(a,m +1,7)
{sorted(a,i,m)} {sorted(a,m +1,7)}

{sorted(a,i,m) x sorted(a,m+ 1,7)}

We have used the overall specification of ms as an hypothesis, as is usual when reasoning about
recursion. The verified property sets us up for a call to merge; with an appropriate specification
of it, we could easily complete the proof of the program using the standard rules for recursive
procedures [22] and the rules of sequential separation logic [43].

It is worth noting that this program cannot be proven using the original rule for disjoint

concurrency from TTPP:
{rre{et {r}ci{Q}
{PAP}C | CH{QAQ}
where C' does not modify any variables free in P’,C’,Q’, and conversely. The reason is that

traditional Hoare logic treats array-component assignment globally, where an assignment to ali
is viewed as an assignment to the entire array

{Pl(ali: E)/a]}ali] := E{P}

In this view the two parallel calls to ms are judged to be altering the same variable, a, and so the
original disjoint concurrency rule from TTPP cannot apply.

In contrast, the axioms of separation logic treat a component assignment, rendered as [a+1] :=
FE, in a local fashion. This, combined with the fact that the separating conjunction lets us divide
two different segments of the same array in a way that depends on the state (the values of i and
7), leads to a simple program proof.

I am grateful to Tony Hoare for suggesting this example (actually, the suggestion was parallel
quicksort, but the point is the same).

4 Process Interaction
The proof rules below refer to assertions from separation logic. A grammar of assertions is in Table

2; assertions include the points-to relation F +— F', all of classical logic, and the spatial connectives
emp and *. The use of - - - in the grammar means we are being open-ended, in that we allow for the
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possibility of other forms such as the — connective from BI or a predicate for describing linked
lists, as in Section 8. A semantics for these assertions has been included in the appendix. There
we also relate the form of the semantics to the “permissions” reading of assertions mentioned in
Section 2.3.

The expressions F that we use are simply standard integer expressions. In the model given
in the appendix the heap is a finite partial mapping from non-negative integers to all integers, so
that whenever £ +— F' holds we will know that E is non-negative. We can regard the negative
integers as non-addressible values, or atoms. (For example, in the predicates for linked lists and
list segments in Sections 8 and 10 we can regard nil as being represented by —1.)

The programming language of this study uses conditional critical regions (CCRs) for process
interaction. Our choice to use CCRs is based on theoretical pragmatism. On one hand CCRs can
represent semaphores, thus assuring their expressiveness as regards synchronization. On the other
hand CCRs are considerably more flexible; see in particular the remarks on “super-semaphores”
below. Another possibility would have been to found our study on monitors, but this would require
us to include a procedure mechanism and it is theoretically simpler not to do so.

The presentation of the programming language and the proof rules in this section and the next
follows that of Owicki and Gries [39], with alterations to account for the heap. As there, we will
concentrate on programs of a special form, where we have a single resource declaration, possibly
prefixed by a sequence of assignments to variables, and a single parallel composition of sequential
commands.

nit;
resource 1 (variable list), ..., r,, (variable list)
Coll--- 11 Cn

It is possible to consider nested resource declarations and parallel compositions, but the basic
case will allow us to describe variable side conditions briefly in an old-fashioned, wordy, style. We
restrict to this basic case mainly to get more quickly to examples and the main point of this paper,
which is exploration of idioms (fluency). We refer to [12] for a more thorough treatment of the
programming language which does not observe this restricted form.

The grammar for the sequential processes is as follows.

C = z:=F|zx:=[E]|[E]:=F|x:=cons(Ey,.., E,) | dispose(E)
| skip| C;C|if B then C else C | while B do C
|

with r when B do C endwith

Sequential processes have the constructs of while programs as well as operators for accessing a
program heap. These include operations [E] := F and z := [E] for mutating and reading heap
cells, and operations z := cons(E1, ..., E,) and dispose(F) for allocating and deleting cells.

The command for accessing a resource is the conditional critical region:

with r when B do C endwith.

Here, B ranges over (heap independent) boolean expressions and C over commands. The with
command is a unit of mutual exclusion; two with commands for the same resource cannot
be executed simultaneously. Execution of with r when B do C endwith can proceed if no
other region for r is currently executing, and if the boolean condition B is true; otherwise, it
must wait until the conditions for it to proceed are fulfilled. Thus, the collection of commands
with r when B do C endwith forms a mutual exclusion group, in the sense of Section 2.2.

The term “resource” is used because the view is that the constructs give a way to protect
system resources from inconsistent use, by grouping together a number of critical regions that
access the state of the resource with mutual exclusion. This way of representing resources can
be seen particularly in examples of Brinch Hansen and Hoare, often using the monitor notation
which is a descendent of conditional critical regions [9, 10, 24].

[Aside: There is a possibility of terminological inconsistency in the use of “resource”, summed
up as follows by Richard Bornat, writing in [5].
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“Hoare called resource bundles simply resources, but I want that word to apply to
the items — heap locations and variables at least, perhaps time and stack space and
whatever else we can manage — ... A resource bundle contains a bundle of resources
described by an invariant formula — hence the nomenclature.”

Bornat prefers to call them simply “bundles”. That makes sense, but I will continue with “resource”
for consistency with previous work.]

A typical use of critical regions is to protect the storage in a buffer; here is code for accessing
a one-place buffer, together with two parallel processes in a producer-consumer relationship:

full == false;
resource buf(c, full)

producem; I get(n);
put(m); consumen;

where the get and put operations expand into with commands as follows,

put(m) 2 yith buf when —full do
c:=m; full := true
endwith

1>

with bufwhen full do
n:=c; full:=false
endwith;

get(n)

For presentational convenience, we are using definitions of the form

name(%) 2 with r when B do C endwith

to encapsulate operations on a resource. In this we are not introducing a procedure mechanism,
but are merely using name(Z) as an abbreviation.

There is a standard encoding of semaphores in terms of CCRs. We use a semaphore name s
to double as a program variable and a resource name, and then define

P(s) = withswhens>0dos:=s—1endwith
V(s) = with swhen truedo s:= s+ 1 endwith.

This use of CCRs to represent semaphores is not reasonable from an implementation point of view
— one would rather use semaphores to implement CCRs — but it is useful from a logical point of
view. The CCR encoding directly represents the exclusion aspect of semaphores, where operations
on the same semaphore must exclude each other in time. We can use CCR proof rules to reason
about semaphores and, furthermore, the CCR notation gives us a simple technical way to treat
“super-semaphores”, semaphores that come with manipulations of auxiliary variables in order to
keep track of certain quantities for the purposes of reasoning. The super-semaphore operations
generally have the form

P'(s) = with swhen s> 0do auxiliary assignments; s := s — 1 endwith
V/(s) = with s when true do auxiliary assignments; s := s+ 1 endwith.

We stress that these auxiliary assignments will never affect control flow, and thus super-semaphores
do not need to be implemented differently than ordinary semaphores; the auxiliary variables are
a reasoning device, solely. Indeed, the proof rule for auxiliary variables in the next section allows
these assignments to be deleted, once an overall property of a program has been proven. An
example using super-semaphores will be given in Section 10.
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Programs are subject to variable conditions for their well-formedness (from [39]). We say that
a variable belongs to resource r if it is in the associated variable list in a resource declaration. We
require that

1. a variable belongs to at most one resource;

2. if variable x belongs to resource r, it cannot appear in a parallel process except in a critical
region for r; and

3. if variable x is changed in one process, it cannot appear in another unless it belongs to a
resource.

For the third condition note that a variable z is changed by an assignment command x := —, but
not by [z] := E; in the latter it is a heap cell, rather than a variable, that is altered.

The first two of these requirements mean that variables owned by resources are protected;
they can only be accessed when within critical regions, which must be executed with mutual
exclusion. The local variables of processes, those that don’t belong to resources, are not protected
by synchronization, but interference with or by them is ruled out by the third condition.

For example, the parallel compositions

x:=3z:=x+1
and
x:=3| withr when truedox:=z +1

are both ruled out by the variable restrictions. Both of these are racy programs.
In the presence of pointers these syntactic restrictions are not enough to avoid interference.
For example, in the legal program

[2] =3 [y] =4

if z and y denote the same integer in the starting state then they will be aliases, while if z and
y are not aliases then there will be no race. In general, whether or not there is a race condition
depends on the state, and we will use assertions to pick out states which guarantee absence of
races.

As it happens, the restrictions do not even rule out more obvious race conditions where we use
integer constants as addresses, such as

[10] := 3 || [10] := 4.

Although it is difficult for a compiler to rule out interference in pointer programs, our proof
rules will ensure that interference is precluded in any program we verify. Syntactic restrictions
control interference through variables, while * controls interference through heap cells.

5 Proof Rules

Now we give the proof rules for resource declarations, concurrency, and critical regions. To reason
about a program

mnit;
resource 7 (variable list), ..., 7, (variable list)
Coll -1 Cn

we first specify a formula RI,,, the resource invariant, for each resource r;. These formulae must
satisfy

e any command z := - - - changing a variable x which is free in RI,, must occur within a critical
region for r;.
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Owicki and Gries used a stronger condition, requiring that each variable free in RI,, belong to
resource ;. The weaker condition is due to Brookes, and allows a resource invariant to connect
the value of a protected variable with the value of an unprotected one.

Also, for soundness, we require that each resource invariant is “precise”. The definition of
precise predicates is postponed until Section 11; we will never use any assertion that is not precise
in any examples, so all examples will adhere to this restriction on invariants.

The inference rule is

{PYini{ R, * ---* RI,,, + P'} {PC |- | Cu{@}
{P}
mit;
resource 7 (variable list), ..., r,, (variable list)
Culf-- I Cn

{RI., *---xRI. *Q}

Here, we show that the resource invariants are separately established by the initialization sequence,
together with an additional portion of state that is given to the parallel processes for access outside
of critical regions. These resource invariants are then removed from the pieces of state accessed
directly by processes, and reestablished on conclusion.

The inference rule for parallel composition is

{P1}Ci{Q1} -+ {P} Cr{Qn}
(Pro- s P} Oy || || Co{Qr s Q)

where
e no variable free in P; or (); is changed in C; when j # 4.

This rule is similar in form to the disjoint concurrency rule. The difference is that the reason-
ing that establishes the triples {P;}C;{Q;} for sequential processes is done in the context of an
assignment of the resource invariants RI,., to resources r;. This contextual assumption is used in
the rule for critical regions.

{(P*RI;)NB}C{Q * RI,} No other process modifies
{P}with r when B do C endwith {Q} Variables free in P or Q

The idea of this rule is that when inside a critical region the code gets to see the state associated
with the resource as well as that local to the process it is part of, while when outside a region
command reasoning proceeds without knowledge of the resource’s state.

The side condition “No other process...” refers to the form of a program as composed of a
fixed number of processes C || --- || Cr. An occurrence of a with command will be in one of these
processes C;, and the condition means that there are no assignment commands x := — in process
C; for i # j, whenever z is free in P or Q.

Brookes gives a more thorough, modern, presentation of the proof rules [12] . In particular, the
contextual assumption that resource invariants have been chosen for each resource when reasoning
about parallel processes is treated there using sequents

I'F{P}C{Q}

where I' is a function mapping resource names to their invariants. This allows for a smooth
treatment of nested resource declarations.

Finally, we will need a rule for deleting assignments to certain variables whose only purpose is
to aid in reasoning.

A set X of variables is auxiliary in a program if every occurrence of a variable z € X
in the program is in a command gy := - - - whose target y is in X. (The use of - - here
covers all of the forms y := E, y := [E] and y := cons(FE1, ..., E,).)
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Because an auxiliary variable never appears within a boolean expression or within an expression
to the right of := when the left is non-auxiliary, an assignment to it cannot affect the flow of
control. This gives rise to an inference rule for removing assignments to auxiliary variables [39].

Suppose that X is an auxiliary variable set for program prog’ and that prog is obtained

from prog’ by removing all commands z := --- to variables x € X. Suppose further
that no variable in X appears freely in assertions P and (). Then

{Plprog'{Q}

{P}prog{Q}

When this rule is applied to a program that uses super-semaphores the deletion of operations
on auxiliary variables results in the super-semaphore operations P’ and V' being mapped to the
standard operations P and V.

Besides these proof rules we allow all of sequential separation logic; see the appendix. In
treating examples we will not be completely formal in reasoning about the sequential commands,
concentrating on the effect of the concurrency rules. But we will insert the most important
intermediate assertions which show key steps in reasoning. After seeing the first example in
Section 6 the reasoning steps might appear straightforward, and some readers may wish to skip
over some of the detailed proof outlines later in the paper.

The soundness of proof rules for sequential constructs is delicate in the presence of concurrency.
For instance, we can readily derive

{10 — 3}z := [10]; 2 := [10]{(10 — 3) Az = 3}

in separation logic, but if there was interference from another process, say altering the contents of
10 between the first and second statements, then the triple would not be true.

The essential point is that proofs in our system build in the assumption that there is “no
interference from the outside”, in that processes only affect one another at explicit synchronization
points. This mirrors a classic program design principle of Dijkstra, that “apart from the (rare)
moments of explicit intercommunication, the individual processes are to be regarded as completely
independent of each other” [17]. It allows us to ignore the minute details of potential interleavings
of sequential programming constructs, thus greatly reducing the number of process interactions
that must be accounted for in a verification.

The Ownership Hypothesis from Section 2.3 is essential in all of this, because attempting to
access a piece of state you don’t own might result in you trampling on the state of another process.
The formal cousin of the Ownership hypothesis — that proven processes only dereference those cells
that they own, those known to exist in a precondition for a program point — ensures that well
specified processes mind their own business. This, combined with the use of * to partition program
states, implements Dijkstra’s principle.

These intuitive statements about interference and ownership receive formal underpinning in
Brookes’s semantic model [12]. The most remarkable part of his analysis is an interplay between
an interleaving semantics based on traces of actions and a “local enabling” relation that “executes”
a trace in a portion of state owned by a process. The enabling relation skips over intermediate
states and explains the “no interference from the outside” idea.

6 Binary Semaphore Example

As our first example of interacting processes we consider the semaphore code from Section 2.2.
The proofs we do will be using rules derived from the standard encoding of semaphore operations
in terms of CCRs given in Section 4.

Here again is the annotated code
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{enp) fomp)

P(free); P(busy);
(10— -} (10— -}
[10] := m; I n = [10];
{10 — -} {10 — -}
V(busy); V(free);

{emp} {emp}

To verify the indicated pre and postconditions for P(-) and V(-) we must specify the semaphore
invariants. For s being either free or busy the invariant is

RI, = (s=0Aemp)V(s=1A10+ ).

In prose this invariant says “either s is 0 and no storage is owned, or s is 1 and the semaphore
owns 10”. Then, we have semaphore proof rules

{(AxRI)ANs>0}s:=s—1{A"* RI,}
{A}p(s){A"}
{AxRI;} s:=s+1{A" «RI,)}
{A}v(s){A"}
which are derived from the rule for CCRs.

Here is how to obtain the triple {emp}P(free){10 — —}, which appears above in the annotated
code for the left process.

{(emp * ((free =0 A emp) V (free = 1 A 10 — —))) A free > 0}
{free=1AN10— -}

free := free — 1

{free=0A10+— -}

{10 — — x (free = 0 A emp)}

{10 — — % ((free=0Aemp) V (free=1A10 — —))}

Consecutive assertions correspond to uses of the rule of consequence. The implication from the
first to the second assertion holds because when we know that free > 0 then this, paired with the
resource invariant, implies that the second disjunct of the invariant holds. Thus, the semaphore
owns address 10. After free is decremented we must re-establish the invariant. We are forced to
choose the first disjunct of the invariant if we are to obtain 10 +— — as the postcondition of the
operation; the reason is that since 10 is not dangling in the A’ part of what we have to show, there
is no way that the right disjunct in the invariant can hold. Thus, the separation in * forces the
semaphore to give up ownership of 10.
In the verification of V(free) the transfer happens in the other direction.

{10 — — % ((free =0 A emp) V (free =1 A 10 — —))}
{10 — — x (free = 0 A emp)}

free := free+1

{10 — — x (free =1 A emp)}

{emp * (free=1A10 — —)}

{emp * ((free =0 A emp) V (free=1A10 — —))}

Here, in the first step since 10 is owned to the left of * we know that the right disjunct of the
resource invariant cannot hold, and thus free is 0. On conclusion we again re-establish the invariant
in the only way open to us.
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{10 — -}

free := 1, busy := 0;

{(free =1A10 — —) * (busy =0 A emp) }
{RIfree * Rlbusy * emp * emp}

resource free(free), busy(busy);

{emp * emp}

{emp} {emp}

while true do while true do
{emp A true} {emp A true}
{emp} {emp}
produce m P(busy);
{enp) {10}
P(free); n := [10];
(10— -} (10— )}
[10] :=m; I V(free);
{10} fomp}
V(busy); consume n
{enp) {enp}

{emp A —true} {emp A —true}

{false} {false}

{false * false}
{RIfree * Rlpysy * false}
{false}

Table 3: Producer/Consumer via Split Binary Semaphore

The verifications for the other semaphore operations are similar, and this completes our proof
of the annotated code.

We have reasoned about the parallel processes themselves, but not yet their concurrent com-
position. To tie the two processes together using the concurrency rule we need to fill in the
surrounding code. One way to do it is to wrap both code segments in infinite loops, together with
assumed code that produces message m and that consumes n.

semaphore free := 1, busy := 0;

while true do while true do
produce m P(busy);
P(free); n = [10];
[10] :=m; I V(free);
V(busy); consume n

Here, the semaphore declaration can be readily desugared as a resource declaration preceded by
an initialization.

free := 1, busy := 0;

resource free(free), busy(busy);

We will explicitly use this desugaring in the proof figure below.

To prove a property of this program we assume that produce and consume do not require any
use of the heap; this is reflected in their preconditions and postconditions below. (If produce and
consume did require heap, other than address 10, we could use the frame rule to interface their
specifications with the triples we have shown for the buffer-managing code.)

The verification is in Table 3. In writing annotated programs we generally include assertions
at program points to show the important properties that hold; to formally connect to the proof
theory we would sometimes have to apply an axiom followed by the Hoare rule of consequence
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or other structural rules. Also, it should be clear how the nesting in this proof figure indicates
where to apply various rules of inference. We first establish the resource invariants, and then
remove them in the precondition for the parallel commands, as required by the rule for complete
programs. Then we use the rule for parallel compositions, and in each process we use the properties
of semaphore operations already established. In both processes emp is the chosen loop invariant.

At this point we can make some of the assumptions about our skeletal code clearer. First,
for there not to be a race condition it is necessary for the semaphores to be initialized properly.
Consider if we initialized both to 1. This faulty initialization is blocked by the proof rules, because
we must establish the RIfee * RIpyusy part of the assertion before the parallel command, and this
cannot hold when both free and busy are 1 because no address can be owned on two sides of .
Second, it is assumed that the address 10 not be dereferenced either immediately before or after
the code snippets. In the logic, such dereferencing is ruled out by the assertion emp. For example,
if we were to place [10] := 42 immediately after the V(busy) command then we would have a
race condition, but this code could not get past the proof rules because 10 must be pointing to
something in the precondition of [10] := 42 in order to find a valid postcondition.

Remarks.

1. Notice that a semaphore invariant talks only about itself, not the other semaphore or the
processes. This local point of view is a consequence of the resource reading of semaphores,
where semaphores are (logically) attached to pieces of state.

2. free and busy together constitute a “split binary semaphore”, where their sum is never greater
than 1. Interestingly, we did not have to refer to the split property at all in our assertions and,
in particular, we did not need to include 0 < free + busy < 1 as an explicit global invariant,
the truth of which was checked at each step. This is not because it is unimportant, but rather
because the relevant information can be gleaned locally, from ownership. For instance, in the
verification of P(busy) when busy is greater than 0 we inferred, from the resource invariant,
that busy owned 10. This then implies that free cannot own 10 and so, because of its resource
invariant, it must at that point be 0.

3. Similarly, we do not check that the program satisfies the Separation Property at each step,
and neither do we check that it satisfies the Ownership Hypothesis. Rather, the system is
arranged to achieve these properties implicitly, for any program that gets past the proof
rules.

4. We have proven {10 — —}program{false} for our final program. At first this might seem a
strange thing to do in a partial correctness formalism, but it is not vacuous: it ensures not
just that the program loops, but also that there is no race condition and that no dangling
pointers are dereferenced.

5. We would have preferred to use a variable instead of a heap address in this example; that is,
normally one would have assignment commands ¢ := m and n := ¢ in place of the accesses to
[10]. The problem is that this code using variables is disallowed by the variable conditions,
because the accesses to ¢ are not within the critical regions (the semaphore operations).
Although CCRs can implement semaphores, the syntactic conditions required for soundness
of the CCR proof rules in [23, 39, 1] rule out almost all semaphore programs, as they would
commonly be written.

The use of a heap address 10 in the semaphore code was, then, a cheeky choice on our part;
we sneak in a heap address in place of a variable, and then we use the dynamic nature of %
to track the address as its ownership passes between the variables and the semaphores. This
was to get around the fact that variables are treated in an entirely static manner by the side
conditions used in Hoare logic; these result in scoping constraints that are set down before
a program runs, and do not change as a program runs.
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This raises the question of whether we could treat variables in the same way as heap ad-
dresses, splitting them with *, and letting their ownership transfer dynamically. This ques-
tion has not yet been resolved to complete satisfaction — we will discuss the issue further
in Section 12 — and for now we will push on and continue exploring the proof system, as
formulated.

7 Pointer-transferring Buffer

The use of the idea of ownership transfer in the previous section might initially seem like a technical
trick, to work around the unstructured nature of semaphore programs. Of course, we would claim
that the view of a semaphore as a holder of resource (apart from the semaphore variable itself), with
P and V operations as transformers of resource ownership, is intuitive. However, as we mentioned
earlier, transfer is sometimes part of the very idea of how an entire program component works,
not just an explanation of some of its internal constructs. In this section and the next we consider
two such examples.

For efficient message passing it is often better to pass a pointer to a value from one process to
another, rather than passing the value itself; this avoids unneeded copying of data. For example,
in packet processing systems a packet is written to storage by one process, which then inserts a
pointer to the packet into a message queue. The receiving process, after finishing with the packet,
returns the pointer to a pool for subsequent reuse. Similarly, if a large file is to be transmitted
from one process to another it can be better to pass a pointer than to copy its contents.

This section considers a pared-down version of this scenario, using a one-place buffer. We give
a “structural integrity” proof which shows ownership properties of pointers, that the right parts of
the code own a pointer at the right time. We do not attempt to specify full correctness. Then we
give further examples to bring out some of the finer points of the proof system, having to do with
the relative nature of ownership transfer and the use of auxiliary variables. These finer points, in
Sections 7.2 and 7.3, may be safely skipped without a danger of loss of continuity.

In this and following sections we use operations cons and dispose for allocating and delet-
ing binary cons cells. (To be more literal, dispose(F) in this section would be expanded into
dispose(F); dispose(E + 1) in the syntax of Section 4.) We also use a dot notation for field
selection rather than explicit address arithmetic, using z.1 and z.2 for [z] and [x + 1]. So, for
example, we write f := 2.2 instead of f := [z + 1].

7.1 A Structural Integrity Proof

We repeat the buffer code from earlier, where we have

full == false;
resource buf(c, full);

and standard code for putting a value into the buffer and for reading it out.

put(z) 2 yith buf when —full do
c:=x; full := true
endwith

get(y) 2 yith buf when full do
y:=c; full:= false
endwith;

We focus on the following code.

x := cons(a, b); | get(y);
put(z); use(y);
dispose(y);
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This creates a new pointer in one process, which points to a binary cons cell containing values a
and b. To transmit these values to the other process, instead of copying both a and b the pointer
itself is placed in the buffer. The second process reads the pointer out, uses it in some way, and
finally disposes it. To reason about the dispose operation in the second process, we must ensure
that y — — — holds beforehand.

As it stands this code is completely sequential: the left process must go first. Since we have
assumed that full has been initialized to false above, the code for get(y) cannot proceed until
put(z) has been done. Like in the preceding section we can have surrounding code, including
these code snippets in loops, as in

{emp}
full .= false;
resource buf(c, full)
while true do while true do
produce(a, b); get(y);
x := cons(a, b); I use(y);
put(z); dispose(y);
{false}

It should be clear how move to a proof of this program from the properties we display of the
snippets within the loops (as we did in Table 3), so in what follows we will just concentrate on
proving properties of the snippets.

The resource invariant for the buffer is

Rl (fullAcv— —,=) V (=full A emp).

This invariant says that the buffer owns the binary cons cell associated with ¢ when full is true,
and otherwise it owns no heap cells.
Here is a proof for the body of the region command in put(z).

{(RIyus * ©— — ) A= full}
{(=full A emp) * x +— — —}
{{E = 7}

c:=x; full := true
{full A ¢ — ——}
{RlIpus}
{RIpys * emp}

The rule for region commands then gives us
{2, ~}put(z){emp}.
A crucial point in the proof of the body is the implication
full N c— —,— = Rlpyy,

which is applied in the penultimate step. This step reflects the idea that the knowledge “x points
to something” flows out of the user program and into the resource. On exit from the critical region
2 does indeed point to something in the global state, but this information cannot be recorded in
the postcondition of put. The reason is that we used ¢ — —, — to re-establish the resource invariant;
having © — —, — as the postcondition would be tantamount to asserting (x — —, —) % (¢ — —,—) at
the end of the body of the with command, and this assertion is necessarily false when ¢ and z are
equal, as they are at that point.
The flipside of the first process giving up ownership is the second’s assumption of it:
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{(Rlpup + omp) A full)
{fullA cr— ——}

y = c¢; full := false
{y === A ﬁfull}
{(=full A emp) * y — —, —}
{Rlbuf* Y= —, 7}’

which gives us

{emp}get(y){y — - —}.

We can then prove the parallel processes as follows, assuming that use(y) satisfies the indicated
triple.

{emp * emp}
{emp} {emp}
x:=cons(a,b); || get(y);
() )
put(x); use(y);
{emp} {y—--}
dispose(y)
{emp}
{emp x emp}
{emp}

Then using the fact that the initialization establishes the resource invariant in a way that gets us
ready for the parallel rule

{emp}

full .= false
{—full A emp}
{Blpus}

{RIpys* emp * emp}

we obtain the following triple for the complete program prog:

{emp}prog{ RIy.s}.

In this verification we have concentrated on tracking ownership, using assertions that are type-
like in nature: they say what kind of data exists at various program points, but not the identities
of the data. For instance, because the assertions use —, — they do not track the flow of the values
a and b from the left to the right process. So, we have proven a “structural integrity” property of
the code, which implies that there is no race condition, but we have not shown real correctness.

In this simple example we could track the values a and b as they flow through the buffer by
changing the resource invariant to have ¢ — a, b instead of ¢ — — — In more realistic examples,
when the code snippets are parts of loops, we would have to use auxiliary variables [39]. Another
use of auxiliary variables is given below in Section 7.3.

7.2 Ownership is in the Eye of the Asserter

Transfer of ownership is not something that is determined operationally. Whether we transfer the
storage associated with a single address, a segment, a linked list, or a tree depends on what we
want to prove. Of course, what we can prove is constrained by code outside of critical regions.
For example, in the program that used the buffer code

x := cons(a, b); | get(y);
put(z); use(y);
dispose(y);
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our hand was forced by the dispose(y) command in the second parallel process.

As an extreme case, if we dispose in the first rather than the second process, and we don’t
attempt to use y in the second process, then we have to ensure that no storage transfers with the
pointer’s value.

x := cons(a, b); I get(y);

put(z);
dispose(z);

This is a silly program, but we should be able to prove it, and we can by choosing a different
resource invariant:
RI: (fullA emp)V (—full A emp).

The use of emp in the left disjunct prevents ownership of the storage associated with x from flowing
into the buffer.
This new resource invariant leads to different specifications of get and put:

{J) = f}put(x){x = 7}
{emp}get(z){emp}.

With the new resource invariant these specifications can be proven using the rule for with com-
mands. We omit the details, and just give the proof figure for the parallel composition.

{emp}

{emp * emp}
{emp} {emp}
x := cons(a,b); || get(y);
{fo—-} {emp}
put(z);
{:C = 7}
dispose(z);
{emp}

{emp * emp}

{emp}

We have seen that memory ownership can either transfer with a pointer’s value, or stay located
in the sending process, depending on what we want to prove. A final point is that it is not possible
for the ownership to go both ways. For example, we cannot find a resource invariant that lets us
prove

x := cons(a, b); I get(y);
put(x); dispose(y);
dispose(z);

as is fortunate since this program attempts to dispose the same pointer in both processes.

The reason why there is no resource invariant letting us prove this program is that the sepa-
rating nature of * will not let ownership of a pointer both flow into the buffer and stay located
in the sending process. More formally, since Brookes has shown that any program that gets past
our proof rules is race-free, and since this program has a race, it cannot be verified (except with
false as the precondition).

7.3 Avoiding Memory Leak using Auxiliary Variables

Returning to the end of Section 7.1, we proved there a weaker property than might have been
expected. That is, we only obtained RI in the postcondition, and the resource invariant in that
section was a disjunction, one of whose components included ¢ — —. But, given the way the
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program works, we know the heap will be empty on termination; there is a small memory leak in
the specification. To fix this, we would like to get emp in the postcondition.

The problem is that we have lost the information that the buffer is empty when we exit the
critical region of the second process. And we cannot include —full in the postcondition, because
this would violate the variable restriction that is essential for the soundness of the with rule.

To handle the problem of memory leak, we must first verify a more complex program that uses
additional variables to record control information. Then we use the Auxiliary Variable Rule to
delete those variables to infer a more exact property for the original program.

The new program has two additional variables, start and finish, and begins with the following
initialization sequence and resource command.

full == false; start := true; finish := false;
resource buf(c, full, start, finish);

We assign to the extra variables within the critical regions for buffer management.

put’(z) 2 with buf when —fulldo
c = x; full := true; start := false
endwith

get'(y) 2 with buf when fulldo
y :=c¢; full := false; finish := true
endwith;

The new resource invariant is

(=full A start A —finish A emp)
RI:  V(full A —start A —finish A ¢ — —,—)
V(=full A —start A finish A emp).

The three disjuncts correspond to what will be three control points: before put’ begins; after
put’ ends and before get’ begins; after get’ ends.

Now, we can reason about the parallel composition as follows, where the triples for put’ and
get’ are established in Table 4

{emp A start A —=finish}
{(emp A start) x (emp A —finish)}

{emp A start} {emp A —finish}
x := cons(—,—); I get’(y);
{x — —,— A start} {y — —,—* (emp A finish)}
put’(z); use(y);
{emp A —start} {y — —,—x (emp A finish)}
dispose(y);
{emp A finish}

{(emp A —start) = (emp A finish)}
{emp A —start A finish}

Next, the initialization sequence establishes {RI * (emp A start A —finish)}, so if we denote by
prog’ the initialization sequence and resource declaration of this section, followed by the parallel
composition, we we use the rule for complete programs to obtain

{emp} prog’ {RI * (emp A —start A\ finish)}.

In the postcondition since —start A finish holds we know that the third of the disjuncts in RI must
be true, so by the rule of consequence we get

{emp} prog’ {emp}.
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PROOF ESTABLISHING {x +— —,— A start}put’(x){emp A —start}:

{(RI * (z — — — A start)) A —full}
{(=full A start A —finish A emp) * © — —, —}
c:=z; full := true; start := false
{(full A =start A —=finish A\ emp) * ¢ — —, —}
{(full A =start A —finish A ¢ — —,—) * (emp A —start)}
{RI * (emp A —start)}

PROOF ESTABLISHING {emp A —finish}get’(y){(y — — —) * (emp A finish)}:

{(RI  (emp A —finish)) A full}
{full A =start A —=finish A ¢ — —, —}
y = ¢; full :== false; finish := true
{=full A —start A finish Ay — — —}
{(=full N =start A finish A emp) * (y — —,—) * (emp A finish)}
{RI * (y — —,—) x (emp A finish)}

Table 4: Proofs for put’ and get’

The variables start and finish occur only in commands of the form start := FE or finish := E.
They thus do not affect the flow of control, and are auxiliary variables in the sense of [39]. Further,
neither the pre nor postcondition of prog’ mentions start or finish. Therefore, we can use the
Auxiliary Variable Rule to remove all commands involving these variables in prog’, as well as
their positions in the resource declaration, and we obtain

{emp} prog {emp}

where prog is the program from Section 7.1. We have finally proven the exact property we were
after.

8 Memory Manager

The binary semaphore and pointer-transferring buffer examples are all-or-nothing: a piece of
storage is either completely owned by a protected resource, or completely owned in user code. We
now consider an example where portions are added to and broken off from the protected resource,
a little at a time.

A resource manager keeps track of a pool of resources, which are given to requesting processes,
and received back for reallocation. As an example of this we consider a toy manager, where the
resources are memory chunks of size two. The manager maintains a free list, which is a singly-
linked list of binary cons cells. The free list is pointed to by f, which is part of the declaration

resource mm(f).

The invariant for mm is just that f points to a singly-linked list without any dangling pointers in
the link fields:

Rl list f.

The list predicate is the least satisfying the following recursive specification.

listr <2 (x =nil A emp) V (Fy.x +— —y * listy)
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PROOF ESTABLISHING {emp}alloc(z,a,b){z — a,b}:

{emp x* list f}
{list f}
if f =nil then
(list f A f =nil)
{f =nil A emp}
z = cons(a, b)
{(z — a,b) * (f =nil A emp)}
{(x +— a,bxlist f}
else
{list f N f #nil}
{Jy. f =~y * listy}
z:=f fi=x2;x.1:=a;.2:=b
{(z + a,b) = list [}
{(z — a,b) x list f}

PROOF ESTABLISHING {y — —,—}dealloc(y){emp}:

{(y =) = list f}

y.2:=f;
[=y;
{list f}

{emp * list [}

Table 5: Proofs for Alloc and Dealloc

When a user program asks for a new cell, mm gives it a pointer to the first element of the free
list, if the list is nonempty. In case the list is empty the mm calls cons to get an extra element.

alloc(z,a,b) 2 yith mm when truedo
if f =nil then z := cons(a,b)
elsex:=f; f=22;xzl:=a;22:=0

dealloc(y) 2 With mm when true do
y.2:=f;
f=y;

(We remind the reader that in this code we are using the notation specified at the beginning of
Section 7, where we are using field selection instead of address arithmetic; e.g., y.2 := f means
the same as [y + 1] := f in the RAM model.

Using the rule for with commands (Table 5) we obtain the following “interface specifications”:

{emp}alloc(z,a,b){x — a,b} {y+— —, —}dealloc(y){emp}.

The specification of alloc(z,a,b) illustrates how ownership of a pointer materializes in the user
code, for subsequent use. Conversely, the specification of dealloc requires ownership to be given
up. The proofs of the bodies of these operations using the with rule describe ownership transfer
in much the same way as in the previous section, and are omitted.

Since we have used a critical region to protect the free list from corruption, it should be possible
to have parallel processes that interact with mm. A tiny example of this is just two processes,
each of which allocates, mutates, then deallocates.
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{emp * emp}

{emp} {emp}
alloc(z,a,b); alloc(y,a’,b');
{z + a,b} {y —d,b'}
x.1:=4; I y.1:=T1;
{z — 4,b} {y — 7,b'}
dealloc(z); dealloc(y);
{emp} {emp}

{emp x emp}

{emp}

This little program is an example of one that is daring but still safe. To see the daring aspect,
consider an execution where the left process goes first, right up to completion, before the right
one begins. Then the statements mutating x.1 and y.1 will in fact alter the same cell, and these
statements are not within critical regions. However, although there is potential aliasing between
x and y, the program proof tells us that there is no possibility of racing in any execution.

On the other hand, if we were to insert a command z.1 := 8 immediately following dealloc(z)
in the leftmost process then we would indeed have a race. However, the resulting program would
not get past the proof rules, because the postcondition of dealloc(x) is emp.

Unsafe daring examples arise when when one process calls dealloc while another uses alloc,
and when there is other dereferencing.

x.1:=42; I alloc(y,a,b);
dealloc(z); yl:=T,;

In this case if the left process goes first the allocated cell might very well be the same address just
freed, in which case we have daring concurrency. However, although there is potential aliasing
between = and y, with the specifications of dealloc and alloc we rule out all possibility of racing.

(x>} {emp}

x.1:=42; I alloc(y,a,b);
{x'_)faf} {y'_’avb}
dealloc(z); y.l:=T,

{emp} {y—1,b}

In particular, note that in a command immediately following dealloc(x) we could not dereference
x, because the postcondition of the command is emp.

We finish this part with an example that is excluded by our proof rules. Consider a parallel
composition of size one, which tries to corrupt the memory manager.

alloc (2);
dealloc (z);
2.2 1= z;

This code makes use of knowledge of the way dealloc works; after z is put back on the front of
the free list, the program creates a cycle.

It is impossible to verify this code in our formalism with any precondition other than false.
The reason is that the proof rule for region commands would require us to reason about the body
of dealloc as follows
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{list f % z+— —,—}
z.2:=f;

[=z

{list f x A% (22— )}

for some A, where z.2 — — means that we own the cdr of cons cell z (in the RAM, thisis z+1 — —).
This is because if the command z.2 := z is to verified, we must have z.2 — — in its precondition
(unless that precondition is false). But after 2.2 := f; f := z the formula {list f * A * (2.2 — —)
cannot hold, since f = z.

The same principle applies with less malicious, but still erroneous, programs. A program
might, through using a disposed pointer or simply through an address arithmetic error, corrupt
the free list. Such an error would in principle show up in a failed verification attempt, since such
corruption is ruled out by our formalism.

Finally, the issues discussed in this section are not exclusive to memory managers. When using
a connection pool or a thread pool in a web server, for example, once a handle is returned to the
pool the returning process must make sure not to use it again, or inconsistent results may ensue.

9 Combining the Buffer and Memory Manager

We now show how to put the treatment of the buffer together with the homegrown memory
manager mm, using alloc and dealloc instead of cons and dispose. The aim is to show different
resources interacting in a modular way.

We presume now that we have the resource declarations for both mm and buf, and their
associated resource invariants. Here is the proof for the parallel processes in Section 7 done again,
this time using mm.

{emp * emp}
{emp} {emp}
alloc(z,a,b); | get(y);
{x'_)fvf} {y’_’faf}
put(x); use(y);
{emp} {y—--}
dealloc(y);
{emp}
{emp * emp}
{emp}

In this code, a pointer’s ownership is first transferred out of the mm resource into the lefthand
user process. It is then sent into the buf resource, from where it is subsequently taken out by the
righthand process and promptly returned to mm.

The initialization sequence and resource declaration now have the form

full .= false;
resource buf(c, full), mm(f);

and we have the triple
{list f} full := false {RIyys* Rl * emp * emp}

which sets us up for reasoning about the parallel composition. We can use the rule for complete
programs to obtain a property of the complete program.

The point is that we did not have to change any of the code or verifications done with mm
or with buf inside the parallel processes; we just used the same preconditions and postconditions
for get, put, alloc and dealloc, as given to us by the proof rule for CCRs. The crucial point
is that the rule for CCRs does not include the resource invariant in the “interface specification”
described by the conclusion of the rule. As a result, a proof using these specifications does not
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need to be repeated, even if we change the implementation and internal resource invariant of a
module. Effective resource separation allows us to present a localized view, where the state of a
resource is hidden from user programs (when outside critical regions).

10 Counting Semaphore Example

Our final example uses counting semaphores to implement an unbounded buffer. Before translating
it into our formalism it will be helpful to first picture the code as originally presented in [17].

begin integer number of queuing portions;
number of queuing portions := O;
parbegin
producer: begin
again 1: produce the next portion;
add portion to buffer;
V(number of queuing positions);
goto again 1;
end;
consumer: begin
again 2: P(number of queuing positions);
take portion from buffer;
process portion taken;
goto again 2;
end;
parend;
end;

In this code the P(-) command in the second process stops the consumer from accessing the buffer
when it is empty. It is possible, though, for the producer to get ahead of the consumer by putting
a number of portions into the buffer while the consumer is, say, either delayed or busy processing
a previously taken portion.

We will program the buffer manipulations using pointers. The buffer will be represented by a
linked list, adding a portion to a buffer will involve allocation at one end of the list, and removing
an element will involve reading and then deallocating an element from the other end of the list.

In order for the add portion and take portion operations to work correctly we must be
careful that they not race. In [17] this is achieved by wrapping these operations in mutex semaphore
operations, using the matching P(mutex code V(mutezr) idiom, thus ensuring mutual exclusion. In
the implementation that we will give, mutual exclusion is stronger than necessary: when there is
at least one element in the queue, it will be okay for the operations to proceed concurrently. In
doing this we want to be careful that there are no races.

The data structure we use will be a non-empty linked list from first to last, which implements
a fifo queue.

last first

The list is pictured in a backwards-going direction because the producer process, which will be
written to the left of ||, accesses the last element, to put a message on the end of the queue, while
the consumer process, on the right of ||, takes the first element off. The element last is a dummy
node. Adding a portion to the buffer places that portion in the car of last, then calls an allocator
to get a new cell, and links that cell into the list making it the last (and dummy). Removing a
portion results in a value being read from the car of the first node, giving this node back to the
allocator, and moving first along the list by one. When the list is of length one last and first will
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PREDICATE DEFINITION

Is[zn 2] VEN (x=2zAn=0A emnp)
V (z#£2zAn>0AFy.z— —y *x lsly(n—1) 2]

RESOURCE INVARIANT
RI 2 Is[f number]
PROOF ESTABLISHING {f = first A emp}P’(number){first — —, f}:

{(f = first A emp) * Is[f numberl] A number > 0}
{3y. first — — y * Is[ly (number — 1) 1]}

f = first.2;

{first — —, f * Is[f (number — 1) 1)}

number := number — 1;

{first — —, f * ls[f numberl]}
PROOF ESTABLISHING {l — —, last x last — —, —}V'(number){l = last A last — —, —}:

{l+— — last = last — —, — x ls[f numberl]}

{last — — — x ls[f numberl] = | — — last}

{(last — —, =) = ls[f (number + 1) last]}

{(last = last A last — —,—) * Is[f (number + 1) last]}
[ := last;

{(l = last A last — —, =) x Is[f (number+ 1) 1]}
number := number + 1

{(l = last A last — —, =) * Is[f numberl]}

Table 6: Proofs for Super-Semaphore Operations

be equal, and this will correspond to an empty buffer; it is in this case that synchronization is
necessary to protect from races.
The relevant parts of the code are as follows.

semaphore number := 0;

produce(m) P(number);

last.1 := m; n := first.1; t := first,
last.2 := cons(—,—); I first := first.2

last := last.2 dispose(t);
V(number) consume(n)

In this code the commands in the two processes do not necessarily exclude one another in time
when number is greater than 0. So, for example, we might be executing both last.1 := m and
n := first.1, and we must beware of aliasing in order to avoid a race condition. Even more
dangerous is the concurrency of last.2 := cons(—,—) and dispose(t) which, in the case of aliasing,
would possibly corrupt the free list.

To describe the state owned by number requires the use of two auxiliary variable, f and .
These variables are updated in super-semaphore operations which, for the purpose of reasoning,
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replace the standard operations in the code.

P’ (number) with number when number > 0 do f := first.2; number := number — 1

> e

V' (number) with number when true do [ := last; number := number + 1.

The idea of the assignment f := first.2 is that the semaphore cannot own first after the P’ operation
completes, because ownership will be released into the following code for reading and then disposal.
When ownership of this single cell is released, what number owns moves along by one in the list.
Note that, since first is altered in the following code, it cannot be used to describe the resource
invariant. Similarly, the assignment [ := last takes a snapshot of a quantity that will be altered
after V' is exited.

The resource invariant says that number owns a linked list segment of size number running
from f to I (but not including [). The definition of this predicate, and proof outlines for P’ and
V/, are in Table 6; since P’ and V' are represented as CCRs, we are just appealing to the proof rule
for with. Some of the steps using the rule of consequence in the table require induction to show.

The proofs in Table 6 provide the correct pre and postconditions for the occurrences of P’ and
V/ in the following.

{l = last A last — —,—} {f = first A\ emp}
produce(m) P’ (number);

{l = last A last — —,—} {first— — f}

last.1 := m; n = first.1; t := first
{l = last A last — —,—} {t = first Nt — —, f}
last.2 := cons(—,—); I first := first.2
{l=last A Jg.(last — —,g*x gr— —,—)} {f =firstAt—— [}
last :; = last.2 dispose(t);

{l — —, last x last — —,—)} {f = first A\ emp}

V' (number) consume(n)

{l = last A last — —,—} {f = first A\ emp}

From this annotated code we can see that last, the dummy, is always owned by the left process,
though its value may change. In some cases the left process owns two cells, one of which gets
swallowed up by the V' operation. The right process owns at most one (binary) cell, and number
always owns the linked list from f to [.

It is helpful to picture a concurrent exection trace; here is a trace when number = 2;
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last first

produce(m) || P(number)

last f first

last.1:=m n:=first.1; t:=first
last.2:=cons(-,-) first:=first.2

last first t

last:=last.2 I dispose(t)

last I first t

V'(number) [l consume(m)

l f
last first t

In each step in the trace the semaphore owns the list running from f to [, but not including I. So,
for instance, in the first list the semaphore owns the two rightmost cells. The left process always
owns the cell [, and anything to the left of it, while the right process owns anything to the right
of f.

Finally, to mimic the uses of goto in the original code pictured at the beginning of this
section, we wrap the specified code segments in while loops; the resulting code is in Table 7. The
most interesting there is the sequence of initialization commands, which establishes the resource
invariant and the preconditions for the two processes. Reasoning about the while loops can be
done with the precondition chosen as the invariant in each case; our reasoning above has already
shown that the bodies are invariant.

With this code we can employ the Auxiliary Variable Rule to delete all the uses of the variables
f and [, in which case we get

{emp}prog{false}

for a program that uses the standard semaphore operations P and V rather than the super-
semaphore versions P’ and V' with auxiliary variables. Thus, we have shown that this sempahore
program has no races.
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{emp}
number := 0; last := cons(—,—); | := last; f := last; first := last
{(number =0Aemp A f =1) x (I = last A last — —,—) * (f = first A emp)}
{RI % (I = last A\ last — —,—) = (f = first \ emp)}
resource number(number);

{(l = last A last — —,—) % (f = first A emp)}

{l = last A last — —,—} {f = first A\ emp}
while true do while true do
produce(m) P’ (number);
last.1 := m; n := first.1; t := first
last.2 := cons(—,—); I first := first.2
last := last.2 dispose(t);
V' (number); consume(n);
{(l = last A last — —,—) A\ —true} {(f = first A\ emp) A —true}
{false} {false}
{false x false}
{RI * false}
{false}

Table 7: Counting Semaphore Program

Remarks.

1. This use of counting semaphores to allow the add portion and take portion operations
to proceed concurrently is similar to the circular buffer program in [20]. The original used a
circular linked list, but it is most often presented using an array and modular arithmetic to
implement the cycling [1]. Reynolds considers the array-based circular buffer class notes from
a course on separation logic [44]. We used the non-circular version here because it is simpler
for expository purposes; in particular, it uses only one semaphore where the circular buffer
uses two. Reynolds also proves a stronger correctness property than here, in a verification
that keeps track of buffer contents as well as ownership.

2. One area of potential lack of concurrency is in the uses of cons and dispose in the different
processes. If the memory manager protects these operations via critical regions, then they
could not both operate at the same time. However, this kind of simplistic protection of the
memory manager, like we did with mm in Section 8, can be greatly improved upon.

For the example of this section, it would make sense to use a manager implemented as a
queue rather than a list terminated with nil, where cons takes an element from one end and
dispose puts an element on the other. That is, take the idea in the implementation of the
buffer in this section, and use it for the resource manager as well. This strategy works well
only when the manager deals with elements all the same size, because otherwise the manager
should search a list (or lists) to find a good place to insert or remove blocks. But this strategy
is a good one for a buffer program as in this section. And when dealing with variable-sized
messages we could still use the same strategy, by employing a pointer-transferring version of
the unbounded buffer, borrowing the ideas from Section 7.

3. It is possible to write a cautious program that allows for concurrent access to the two ends of
a buffer by associating a different critical region or monitor with each buffer element. This
would take us outside the formalism as presented in this paper since it would require holding
resource names in the heap, and dynamic allocation and deallocation of them. More to the
point, though, it is hard to argue that this cautious way of programming the example is
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superior to the daring version, because it requires an unbounded number of cautious units
of mutual exclusion where one daring semaphore will do.

4. The need to use auxiliary variables in examples such as this one is an impediment to au-
tomation. We have been using lightweight assertions that describe integrity rather than full
correctness properties. Ideally, one would like to have a form of checking such assertions
automatically, by analogy with typechecking. However, given a piece of code we sometimes
would have to in some way guess auxiliary variables and assignments to them, just to prove
safety.

11 The Reynolds Counterexample and its Consequences

The following counterexample, due to John Reynolds, shows that the concurrency proof rules are
incompatible with the usual Hoare logic rule of conjunction (unless the resource invariants are
required to be precise)

(PYCIQ} {P)C{Q)
{PAPIC{QAQ)

The example uses a resource declaration

resource 7()
with invariant
RI. = true.

Let one stand for the assertion 10 — —. First, we have the following derivation using the axiom
for skip, the rule of consequence, and the rule for critical regions.

{true}skip{true}
emp V one) x trueskipiemp * true
P P P

{emp V one}with r when true do skip endwith{emp}
Then, from the conclusion of this proof, we can construct two derivations:

{emp V one}with r when true do skip endwith{emp}

{emp}with r when true do skip endwith{emp}

{emp * one}with r when true do skip endwith{emp * one}

{one}with r when true do skip endwith{one}

and

{emp V one}with r when true do skip endwith{emp}

{one}with r when true do skip endwith{emp}

Both derivations begin with the rule of consequence, using the implications emp = emp V one and
one = emp V one. The first derivation continues with an application of the ordinary frame rule,
with invariant one, and one further use of consequence.

The conclusions of these two derivations are incompatible with one another. The first says that
ownership of the single cell is kept by the user code, while the second says that it is swallowed up
by the resource. One application of the conjunction rule with these two conclusions gives us the
premise of the following which, using the rule of consequence, leads to an inconsistency.

{one A one}with r when true do skip endwith{emp A one}

{one}with r when true do skip endwith{false}
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The last triple would indicate that the program diverges, where it clearly does not.

The fact that the resource invariant true does not precisely say what storage is owned conspires
together with the nondeterministic nature of * to fool the proof rules.

The way out of this problem is to insist that resource invariants precisely nail down a definite
area of storage [37]. In the semantic notation of the appendix,

an assertion P is precise if for all states (s, h) there is at most one subheap h' C h
where s,h’' = P.

The subheap k' here is the area of storage that a precise predicate identifies. Furthermore, if P
is precise then there can be at most one heap splitting that can be chosen to make P * ) true,
whether or not @ is precise. So precision short-circuits the non-deterministic nature of .

The assertions emp and E +— F and x-combinations of precise predicates are all precise. A
conjunction P A @ is precise if one of P or @) is. This form was used in the resource invariant for
the pointer-transferring buffer. A disjunction of the form (B A P) V (B’ A Q) is precise if P and
QQ are and B and B’ are pure boolean expressions that are exclusive. This form was used in the
resource invariants for binary semaphores, with B of the form s = 0 and B’ of the form s = 1.

We can now indicate the main soundness result of [12]:

Theorem (Brookes): the proof rules are sound if all resource invariants are precise
predicates.

This rules out Reynolds’s counterexample because true is not a precise predicate. All the resource
invariants in the examples of this paper are precise.

In [37] a similar issue was addressed in a sequential setting, and there soundness was achieved
either by restricting resource invariants to be precise, or by restricting preconditions of proce-
dure specifications to be precise. The latter restriction puts the “blame” for unsoundness on the
assertion emp V one, which is indeed a strange assertion, rather than on the resource invariant
true.

So, by analogy with [37], we might expect that the proof system here would be sound under a
restriction on the with rule:

False Conjecture : the proof rules are sound if the precondition in the (conclusion
of the) rule for region commands is restricted to precise predicates.

This is false because we can get to the two incompatible conclusions above via different routes,
using the axiom for skip, the rule of consequence, and the rule for critical regions.

{one * true} skip {one * true}

{(one * true) A true} skip {one * true}

{one}with r when true do skip endwith{one}

{one * true} skip {one * true}

{one * true} skip {true}

{(one * true) A true} skip {emp * true}

{one}with r when true do skip endwith{emp}

We could then again use the conjunction rule to obtain an inconsistency.

Remarks.

1. The reason why we are worried about the rule of conjunction in this section is that it seems
that it should be true in a reasonable semantics; indeed, it does hold in Brookes’s semantics.
Now, there are models of logics for sequential programs which invalidate the conjunction
law; these models use predicate transformers that do not satisfy condition of conjunctivity
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(preservation of finite conjunctions). It may be that there is a model of our concurrency
rules where there is no need for restricting the invariants to precise predicates, but where
the conjunction law is invalid.

In sequential program logics some have argued in favour of non-conjunctive predicate trans-
formers, and so against the conjunction law. We would not feel comfortable making such an
argument here. The intuitive statements about ownership in this paper make sense when
assertions are precise, a point validated by Brookes’s analysis. It is less clear that the state-
ments make sense when assertions are imprecise. Nonetheless, the possibility that there
might be a model with no restriction on predicates, but that invalidates the conjunction
rule, is at least worth noting.

2. For readers familiar with [37], the false conjecture above might at first suggest some incom-
patibility with the results there on information-hiding modules. However, Hongseok Yang
has explained why there is actually no incompatibility. He states the following moral of the
second counterexample.

We should not give two different interface specs of a single module procedure if
the resource invariant of the module is not precise. Even when the preconditions
of those two specs are precise, we might get an inconsistency.

Yang has shown how an extension of the proof rules in [37], which allows a procedure to
have two specifications instead of only one, leads to a variant on the second counterexample
of this section.

3. The predicates array(a,i,j) and sorted(a,i,j) used for parallel mergesort in Section 3 are
not precise. This is not in contradiction of Brookes’s result, because parallel mergesort does
not use CCRs.

The predicates can be made precise, using a construction P A —(P % —emp) which focuses at-
tention on the minimum heap satisfying P, where P is either array(a,i,j) or sorted(a,i,j).
In fact, these two predicates are supported in the sense of [37], and Brookes’s soundness
theorem works as well for supported resource invariants, when the preconditions and post-
conditions of with commands are intuitionistic (closed under heap extension). This is by
analogy with a result of [37].

12 Reservations and Limitations

The first, and most obvious, limitation of this work is our focus on partial correctness specifications,
so our results pertain to safety but not liveness. It would be interesting to attempt to recast the
ideas in a temporal logic form. The main question in doing this is whether the modular, or
local reasoning, aspect of our approach can be maintained. Initially, it may seem that liveness
properties require a form of global reasoning, as they involve intricate details about how a number
of processes interact; we are not sure, however, if this global aspect is necessary.

A second limitation is that we have not allowed shared read access to heap cells. An interesting
approach to this issue of passivity has recently been put forward in Boyland’s work on fractional
permissions [7]. Permissions have been adapted to separation logic in [5], extending the work here
and leading to proofs of some concurrent programs such as readers-and-writers that are beyond
the current paper. Although progress has been made, there is more to be learnt before a final
solution to the problem of passivity can be claimed.

The restriction to precise resource invariants was initially an irritation, but precision seems to
be interesting in its own right. We wonder whether there is a general calculus of precise predicates,
perhaps extending ideas in [3].

One reservation is that the logic is formulated at a particular level of abstraction. Here we
have used a RAM model, and other models are possible, but it would be desirable to be able
to transit between levels of abstraction that take different points of view on what “the heap”
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means. This would mean being able to do refinement proofs that start from an abstract program
and specification, rather operating exclusively on the level of the final programs. We decided to
present our ideas on a particular level for the very simple reason that the right way to incorporate
refinement into our logic is not clear.

Finally, the presence of the variable side conditions in the frame rule and the concurrency
proof rules is a continuing source of embarrassment. This is a general problem in Floyd-Hoare
logic, having nothing to do with separation logic per se. But it is striking that heap locations
are treated here more flexibly than variables, allowing their dynamic movability. It is tempting to
just disallow variable alteration, confining mutation to the heap, in the style of ML. While simple
to do in a language design, if we do that while maintaining the pure (heap independent) expres-
sions of separation logic, then the assertions used to specify example programs quickly become
unwieldy; one trades simplicity for the logician (simpler looking proof theory) for complexity for
the programmer. So that is no solution. It seems that we either need to find a way to describe
a decent logic of complex, heap-dependent expressions, or find a way to treat variables more like
locations. We refer to the recent work of Bornat [4] for an attempt in the second direction and
for further discussion.

13 Conclusions and Related Work

The essential idea in this paper is the interaction between a notion of “mutual exclusion group” and
the separating conjunction *. Each group is viewed as a guardian of resource, where an associated
invariant describes its attached state, and the use of * to partition the state amongst processes
and exclusion groups enables distinct program components to be reasoned about independently.
These ideas are a development of those of Hoare in [23], with the main addition being the use
of the separating conjunction rather than static variable constraints to extend the method to a
larger class of programs, including programs that use pointers and programs that exhibit what we
have labelled “daring concurrency” (Section 2.2).

The notion of mutual exclusion group (Section 2.2) is intimately related to raciness. In fact, we
should stress that raciness is only relative to a chosen level of granularity. As an extreme, if you
surround every single read and write to a shared resource by a critical region, putting everything
in the same mutual exclusion group, then there are no races. In the language and proof system of
this paper we say nothing about the granularity of basic commands such as x := y+ 2z (commands
that don’t have subcommands), and we regard them as not part of any exclusion group (though
they might appear within, not as, a command in a group). In more detail, the notion of raciness
is that is appropriate is that two processes race if two basic statements that are not in the same
exclusion group may attempt to touch the same portion of store at the same time. According
to this definition, the notion of race is relative to what one considers to be the mutual exclusion
groups.

For this reason the implications of Brookes’s “no races” theorem should be interpreted with
care. If we vary our notion of exclusion group then we can in principle reason about programs that
are normally considered racy. For example, one might take the position that certain very basic
commands, such as z := 1 and = := x + 1, that access a given piece of state can be considered
atomic, and we might regard them as being in the same mutual exclusion group.® This kind of
stipulation is natural when reasoning about certain interfering programs. The choice one makes of
whether two basic commands interfere or race is not fundamental to the approach in this paper,
but rather simply constitutes one of a range of choices of what the mutual exclusion groups are.
Once such a choice is laid down (we took one in the paper), the reasoning methods described here
apply.

We have used a particular language and model to illustrate our methods, but they appear to
apply more generally. For instance, in light of this discussion on the relative nature of raciness

3This is independent of whether we use the syntactic mechanisms of resource names and CCRs to express
exclusion groups: the pertinent point is that we would associate an invariant on  (and perhaps other variables) to
describe the outcomes of on-the-surface racy behaviour.
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it is conceivable that the methods could be applied to programs that are normally thought racy.
But we would want a method that applies well, not only in principle. A good challenge would be
to give convincing specifications for data structures that use fine-grained locking schemes to allow
a high degrees of concurrency (e.g., [29]). Another would be to reason about the extremely subtle
non-blocking algorithms which allow races but recover from them rather than prohibiting them
(e.g. [30]).

Speaking of non-blocking concurrency, it is natural to wonder whether an implementation of
CCRs using the “transaction” idea [21] might satisfy the same or similar proof rules to the ones
given here. A transaction attempts to complete, but if another transaction attempted to access
the same cells in the meantime then it tries again; transactions purposely do not enforce literal
mutual exclusion. It seems, though, that transactional concurrency is “as if race free” when
used cautiously (when shared state is accessed only within a transaction). There are also daring
idioms that one would probably like to account for, when access to non-transactional memory gets
transferred from one process to another.

We have been speaking about shared-variable concurrency, but it may seem as if the intuitive
points about separation made in this paper do not depend on it; it would be interesting to attempt
to provide modular methods for reasoning about process calculi using resource-oriented logics. In
CSP the concepts of resource separation and sharing have been modelled in a much more abstract
way than in this paper [25]. And the w-calculus is based on very powerful primitives for name
manipulation [31], which are certainly reminiscent of pointers in imperative programs. In both
cases it is natural to wonder whether one could have a logic which allows names to be successively
owned by different program components, while maintaining the resource separation that is often
the basis of system designs. However, the ultimately right way of extending the ideas here to
process calculi is not obvious to this author.

An important step has been taken in work of Pym and Tofts on a process calculus and as-
sociated modal logic using Bl-style technology [41]. They explicitly distinguish resources from
processes, associate resource transformers to action names, and include explicit primitives for re-
source transfer While the exact connection to the work here is unclear — for one, they use the
synchronous calculus SCCS as their basis — the overall viewpoint is conceptually consistent with
our approach. In particular, the basic decision to target the interaction between resources and
processes appears to have some promise.

A line of work that bears a formal similarity to ours is that of Caires, Cardelli and Gordon
on logics for process calculi [15, 14]. Like here, they use a mixture of substructural logic and
ordinary classical logic and, like here, they consider concurrency. But independence between
processes has not been emphasized in their work — there is no analogue of what we called the
Separation Property — and they do not distinguish between resources and processes. Their focus
is instead on the expression of what they call “intensional” properties, such as the number of
connections between two processes; several illuminating examples are given in [13]. Although
similar in underlying logical technology, their approach uses this technology in a very different
way.

The theme of ownership transfer was the subject of previous work [37], which used methods
similar to those of this paper in a sequential setting, to approach modules. The modularity aspect
is present here in the way that the rule for critical regions uses a resource invariant only when
reasoning about the body of a region, with the separating conjunction prohibiting tampering with
the invariant when outside of critical regions. David Naumann has suggested that a new attack
is opening up on an old problem, what he calls “imperative modules”, which hide mutable state
as well as types and code. With Barnett he has described an interesting approach to the problem
which utilizes auxiliary variables in a novel way [33].

There idea of ownership is, as one might expect, central in work on Ownership Types [16], and
also in the semantics of objects [2]. The typing schemes were originally developed to account for
encapsulation, but were then adapted as well to the problem of ruling out race conditions [6]. The
main limitation of the ownership typing schemes is that they do not deal naturally with changing
partitions, especially when the partitions depend on the values of program variables as is the case
in the program for the buffer with concurrent access. Perhaps more promising in this direction
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are typing schemes based on separation or permissions (e.g., [7, 46]).

Indeed, in this paper we have mainly used assertions that are type-like in the sense that
they describe ownership at program points, but not specific properties of the contents of a data
structure. This raises the question of whether a method of checking lightweight separation logic
assertions might be used in tandem with a verification condition generator to give a form of logical
control of interference, as a more flexible version of the syntactic control of interference [23, 9, 42].

Stepping back in time, one of the important early works on reasoning about imperative con-
current programs was that of Owicki and Gries [38]. The Owicki-Gries method involves explicit
checking of non-interference between program components, while our system rules out interference
in an implicit way, by the nature of the way that proofs are constructed. The result is that the
method here is more modular.

This last claim is not controversial; it just echoes a statement of Owicki and Gries. There are
in fact two classic Owicki-Gries works, one [39] which extends the approach of Hoare in TTPP,
and another [38] which is more powerful but which involves explicit non-interference checking.
They candidly acknowledge that “the proof process becomes much longer” in their more powerful
method; one way to view the present work is as an attempt to extend the more modular of the
two approaches, where the proof process is shorter, to a wider variety of programs.

The non-compositional nature of the more powerful of the Owicki-Gries methods has lead to
considerable further work. The most prominent is the rely/guarantee method of Jones [26] (and
the related [32]), which is rightly celebrated for providing a compositional approach to reasoning
about concurrency. The examples in this paper could probably be proven, in principle, with
rely /guarantee. But the specifications and proofs would be much longer.

Take parallel mergesort. We used a pre/post spec

{army(a, i,j)} ms(a, i, j) {sorted(a, i,j)}

and then proved the recursive calls directly using the disjoint concurrency rule (Section 3). In
contrast, in the rely /guarantee formalism we would have to include additional remarks about the
interaction with the environment: stated informally,

e Rely: No other process touches my array segment array(a,i, j);
e Guarantee: I do not touch any sotrage outside my segment array(a, i, j).

The problem here is not just the cost for individual steps of reasoning, but rather that the rely
and guarantee conditions, which are present to deal with subtle issues of interference, complicate
the specification itself, even when no interference is present. This seems to me to be clear evidence
that by using a resource-oriented logic it is possible, at least in some cases, to provide much simpler
and more modular specifications and proofs than with existing approaches.

Of course, this little comparison should be taken with a grain of salt — the example is maxi-
mally oriented to separation logic’s strong points. But again, the criticism that we make is not
controversial. In his writings Cliff Jones has taken a refreshingly critical look at rely/guarantee
[27, 28]. He is looking for methods to combat interference flooding, where complex specification
forms used to account for subtle concurrent behaviour flood a specfification development, into
areas where interference does not arise and where simpler specification forms suffice.

We are in agreement with many of the remarks Jones makes, particularly on the challenges
facing the development of truly modular specification and reasoning methods for concurrent pro-
cesses, even if we have used different techniques. We repeat, however, that this paper is but a first
attempt at bringing separation logic to concurrency. We focussed on CCRs and resource invariants
because it eased the attempt; perhaps a marriage between separation logic and rely-guarantee is
also possible. Generally, though, we believe that resource-oriented logics offer considerable promise
for modular reasoning about concurrent programs, as we hope to have demonstrated in the form
of proofs and specifications given in this paper.
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Appendix: Sequential Separation Logic

Reasoning about atomic commands is based on the “small axioms” where x, m,n are assumed to
be distinct variables.

{E =} [E]:=F{E— F}

{F — -} dispose(F) {emp}

{xr =m Aemp}r := cons(FEy, ..., Ex){x — Ei|lm/x], ..., Ex[m/z]}
{r =mAemp}z:=FE{x=(E[m/x]) A emp}

{t=m AN Ew—n}z:=[E]{zr=nA E[m/z]— n}
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Typically, the effects of these “small” axioms can be extended using the frame rule:

{P}C{Q} C doesn’t change
{PxR}C{Q«R} variables free in R

In addition to the above we have the usual proof rules of standard Hoare logic.

{P A ByC{P} P=P {P}C{Q"} Q@' =Q
{P}while Bdo C{P A ~B} {P}C{Q}
{PICi{Qr {QiC{R}
{P}skip{P} {P}C1; Co{ R}
{PrB}C{Q} {PA-B}C'{Q}
{P}if BthenCelse C'{Q}

Also, although we have not stated them, there is a substitution rule and a rule for introducing
existential quantifiers, as in [34].

In order to apply the rule of consequence we have to have a way to determine whether an
implication P = @ is true. We do so in this paper using a semantics of the assertion language,
which might be viewed as an oracle in the proof system. We can use P = @ in the consequence
rule when s,h |= P = @ holds for all s and h in the semantics below (when the domain of s
contains the free variables of P and Q.)

A state consists of two components, the stack s € S and the heap h € H, both of which are
finite partial functions as indicated in the following domains.

Variables = {z,y,...} Nats = {0,1,2..}
Ints =2 {..,-1,0,1,...} H 2 DNats —g, Ints
S 2 variables —qn Ints States = SxH

Integer and boolean expressions are determined by valuations
[E]s € Ints [B]s € {true, false}

where the domain of s € S includes the free variables of F or B. We use the following notations
in the semantics of assertions.

=

. dom(h) denotes the domain of definition of a heap h € H, and dom(s) is the domain of s € S;
2. h#h’ indicates that the domains of A and h’ are disjoint;

3. hxh' denotes the union of disjoint heaps (i.e., the union of functions with disjoint domains);

>~

. (f | i+ j) is the partial function like f except that i goes to j.

The satisfaction judgement s, h = P which says that an assertion holds for a given store and heap.
(This assumes that Free(P) C dom(s), where Free(P) is the set of variables occurring freely in P.)

s,h =B iff  [B]s = true
s,hie B F it {[E]s} = dom(h) and h([E]s) = [F]s
s,hi=P=Q iff ifs,h|=P then s,h=Q
s,hEVe.P iff WoelInts.[s|a— o], h|=P

s, h = emp iff  h =[] is the empty heap
S,h':P*Q iff Eh(),hl.ho#hl, ho*hlzh, S,ho':P and S,hl ':Q
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Notice that the semantics of E — F' is “exact”, where it is required that E is the only active
address in the current heap. Using * we can build up descriptions of larger heaps. For example,
(10 — 3) * (11 — 10) describes two adjacent cells whose contents are 3 and 10.

The “permissions” reading of assertions is intimately related to the way the semantics above
works with “portions” of the heap. Consider, for example, a formula

list(f) *xx— ——

as was used in the memory manager example. A heap h satisfying this formula must have a
partition h = hg * h; where hgy contains the free list (and nothing else) and hy contains the binary
cell pointed to by x. It is evident from this that we cannot regard an assertion P on its own
as describing the entire state, because it might be used within another assertion, as part of a x
conjunct.

The reading of triples in separation logic then takes this point one step further, by integrating
the “portions of state” view with the idea of access. The precondition describes the portion of
state needed by the command to run without an access violation (a memory fault, or a race) or,
put another way, the portion of state that the command needs to own before it is run.
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