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1 Surface curvature

In 3D a surface is parameterised by u, v :

C(u, v) =





x(u, v)
y(u, v)
z(u, v)



 (1)

The tangent plane at (u, v) is spanned by two independent vectors given by

T 1(u, v) = Cu(u, v) =





xu(u, v)
yu(u, v)
zu(u, v)



 (2)

T 2(u, v) = Cv(u, v) =





xv(u, v)
yv(u, v)
zv(u, v)



 (3)

and the normal is given by

N̂(u, v) =
Cu × Cv

|Cu × Cv|
(4)

with T 1 · N̂ = T 2 · N̂ = 0 by definition.
By taking any vector a = a1T 1 + a2T 2 in the tangent plane, the plane spanned

by N̂ and a cuts the surface C(u, v) to give a parametric line Ca(s). The curvature
of this line can be found from the two dimensional expression

κa(u, v) =
N̂(u, v) · C̈a(s)

|Ċa(s)|2
(5)

Since direction a is determined by only two basis vectors, it suggests that the cur-
vature in any direction can be determined by two fundamental curvatures. This is
indeed the case, and the mathematical tools required are given by the Weingarten
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Figure 1: Relationship of tangent plane and normal vectors in determining curvature.
Cu and Cv are derivatives of surface with respect to parameters u, v. Normal
N̂ = Cu×Cv

|Cu×Cv|
. e1, e2 are eigenvectors of Weingarten mapping matrix H.

Mapping. We define the First Fundamental Form

F1 =

(

Cu · Cu Cv · Cu

Cu · Cv Cv · Cv

)

(6)

which maps movement in parameter space to movement on the surface, and the
Second Fundamental Form

F2 =

(

N̂ · Cuu N̂ · Cuv

N̂ · Cvu N̂ · Cvv

)

(7)

which maps change in the tangent direction into the normal direction. We can now
define the Weingarten mapping matrix

H = F1
−1

F2 . (8)

This matrix is defined parametrically everywhere on the surface. Since it is sym-
metric it has an eigendecomposition with real eigenvalues

H = E

(

κmax 0
0 κmin

)

E
T . (9)

The maximum curvature κmax is in a direction e1 on the tangent plane, and the
minimum curvature κmin is in a perpendicular direction e2. More commonly used
are the Gaussian and Mean curvatures defined by

κGauss = DetH = κmaxκmin (10)

κMean =
1

2
TraceH =

1

2
(κmax + κmin) (11)
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2 Voxel curvature

To find curvatures from a 3D voxel array f(x, y, z) we need to find equivalent forms
for the tangent directions, and the Weingarten Mapping.

The normal is in the direction of the gradient

n = ∇f =





fx

fy

fz



 (12)

which defines direction cosines of a local spherical polar coordinate system

n̂ =





sin θ cos φ

sin θ sin φ

cos θ



 =
1

√

f 2
x + f 2

y + f 2
z





fx

fy

fz



 (13)

We may choose any directions in the tangent plane. Let us arbitrarily choose a
direction p̂ by taking the vector product of n̂ with the Cartesian basis direction

ẑ =





0
0
1





p̂ =
n̂ × ẑ

|n̂ × ẑ|
=





sin φ

− cos φ

0



 =
1

√

f 2
x + f 2

y





fy

−fx

0



 (14)

Note that this direction lies in the xy plane by choice. We now find a second tangent
direction

q̂ =
n̂ × p̂

|n̂ × p̂|
=





− cos θ cos φ

− sin θ cos φ

sin θ



 =
1

√

(f 2
x + f 2

y )(f 2
x + f 2

y + f 2
z )





−fxfz

−fyfz

f 2
x + f 2

y



 (15)

We choose direction p̂ to correspond to Cu and direction q̂ to correspond to
Cv. Since p̂ , q̂ are orthonormal by construction we find that the first fundamental
form is the identity matrix. We thus only need to find the second fundamental form
which will be identical to the Weingarten mapping matrix H. We can define the
directional derivatives

∂

∂p
= p̂ · ∇ = sin φ

∂

∂x
− cos φ

∂

∂y
(16)

∂

∂q
= q̂ · ∇ = − cos θ cos φ

∂

∂x
− sin θ cos φ

∂

∂y
+ sin φ

∂

∂z
(17)

and we need to evaluate
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fpp = n̂ ·
∂p̂

∂p
=

fx
∂fy

∂p
− fy

∂fx

∂p
√

(f 2
x + f 2

y )(f 2
x + f 2

y + f 2
z )

(18)

fpq = n̂ ·
∂q̂

∂p
=

−fx
∂(fxfz)

∂p
− fy

∂(fyfz)
∂p

+ fz
∂(f2

x+f2
y )

∂p
√

(f 2
x + f 2

y )(f 2
x + f 2

y + f 2
z )

(19)

fqp = n̂ ·
∂p̂

∂q
=

fx
∂fy

∂q
− fy

∂fx

∂q
√

(f 2
x + f 2

y )(f 2
x + f 2

y + f 2
z )

(20)

fqq = n̂ ·
∂q̂

∂q
=

−fx
∂(fxfz)

∂q
− fy

∂(fyfz)
∂q

+ fz
∂(f2

x
+f2

y
)

∂q
√

(f 2
x + f 2

y )(f 2
x + f 2

y + f 2
z )

(21)

Each of these terms is individually a curvature and we should have fpq = fqp. We
thus can write

H = F2 =

(

fpp fpq

fpq fqq

)

=

(

fpp fqp

fqp fqq

)

(22)
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