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Concurrent separation logic (CSL) is based upon the
following concurrency rule:

{A1} Ci{B1} {A2} Co{B2}
{Al ® Ag} 1 || Csy {Bl ® BQ}

This rule says that concurrent threads behave
compositionally with respect to separation (®) between
their respective memory resources.

However, separation ® typically allows some sharing of
read-only resources between threads, which can be
controlled using fractional permissions.

2/ 13



Fractional permissions
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Fractional permissions

Fractional permissions are intended to allow the division of
memory into two or more “read-only copies”.

Permissions can be represented e.g. as rationals in the
open interval (0,1]. 1 is the write permission and values in
(0,1) are read-only permissions.

Heaps store a data value and permission at each location.
Heaps can be composed provided they agree where they
overlap; we add the permissions at overlapping locations.

Separation ® denotes the division of a heap using this
composition. E.g., we have

:E(L)Bd@x(b);?dsz%d.
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Typical CSL proof structure

{2 d) {22 a4y
foo(); bar();
{xP—}Sd*A} {xp—éd*B}
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Typical CSL proof structure

{z — d}

(28 d®z ™ d)

{z 25 4} {z 23 d}
foo(); bar();
{xP—‘?d*A} {m(»)jd*B}

(zRdes?de A® B}
{r—d®A® B}

BUT... we hit problems when we use permissions to describe
regions of memory and not just pointers.
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The first difficulty

Suppose we define linked list segments using ®:

Iszy =qef (x=yAemp)V (Fz.z2— 2®Iszy) .
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The first difficulty

Suppose we define linked list segments using ®:
Iszy =qef (x=yAemp)V (Fz.z2— 2®Iszy) .
Now consider traversal procedure foo(x,y):
foo(x,y) { if x=y then return; else foo([x],y); }
This satisfies the following Hoare triple:

{(szy)"?} foolx,y); {(Iszy)*5} .

However, we will have difficulties proving so!
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Failed proof attempt

{(szy)*®}
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if x=y then return;

else

foo([x],y);

b {2y}
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Reason for failure

® The highlighted inference step is not sound:
o e (Iszy)?? £ (z— 2@ Iszy)"P .

® This is because the pointer and list segment can overlap on
the LHS, but not on the RHS. In general,

A"®B™ £ (A® B)" .

e But if we use strong separation %, which enforces
disjointness of heaps, to define our list segments, the proof
above goes through (since (A x B)™ = A™ x B™).
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The second difficulty

The triple {Iszy} foo(x,y); || foolx,y); {lsxy} is correct,
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{(szy)*?} {(say)*®}
foo(x,y); foo(x,y);
{(Iszy)*°} {(s2y)0}

8/ 13



The second difficulty

The triple {Iszy} foo(x,y); || foolx,y); {lsxy} is correct,
but again the proof fails:

{lszy}
{(szy)*?} {(say)*®}
foo(x,y); foo(x,y);
{(Iszy)*°} {(s2y)0}

8/ 13



The second difficulty

The triple {Iszy} foo(x,y); || foolx,y); {lsxy} is correct,
but again the proof fails:

{lszy}
{(Is ry)?5 ® (Isx y)0'5}

{(sty)0'5} {(Is:vy)o'5}

foo(x,y); foo(x,y);

{(Is:vy)o'5} {(sty)0'5}

8/ 13



The second difficulty

The triple {Iszy} foo(x,y); || foolx,y); {lsxy} is correct,
but again the proof fails:

{lszy}
{(Is ry)?5 ® (Isx y)0'5}

{(sty)0'5} {(Is:vy)o'5}

foo(x,y); foo(x,y);

{(Is:vy)o'5} {(sty)0'5}

{(Iszy)*° & (Iszy)"°}

8/ 13



The second difficulty

The triple {Iszy} foo(x,y); || foolx,y); {lsxy} is correct,
but again the proof fails:

{lszy}
{(Is ry)?5 ® (Isx y)0'5}

{(sty)0'5} {(Is:vy)o'5}

foo(x,y); foo(x,y);

{(Is:vy)o'5} {(sty)0'5}

{(Isacy)o'5 ® (sty)”}
{lszy}

8/ 13



The second difficulty

The triple {Iszy} foo(x,y); || foolx,y); {lsxy} is correct,
but again the proof fails:

{lszy}
{(Is ry)?5 ® (Isx y)0'5}

{(sty)0'5} {(Is:vy)o'5}

foo(x,y); foo(x,y);

{(Is:vy)o'5} {(sty)0'5}

{(Iszy)*° & (Iszy)"°}

Y% {lszy}

8/ 13



Reason for second failure

® The highlighted inference step is not sound:

(Iszy)?® ® (Isxy)™® Elszy .

9/ 13



Reason for second failure

® The highlighted inference step is not sound:

(Iszy)?® ® (Isxy)™® Elszy .

® This is because the list segments on the LHS might be
(partially) non-overlapping. In general,

A% @ ADP e A

9/ 13



Reason for second failure

® The highlighted inference step is not sound:

(Iszy)?® ® (Isxy)™® Elszy .

® This is because the list segments on the LHS might be
(partially) non-overlapping. In general,

A% @ ADP e A

® When splitting the list segment Isx y, we lost the info that
the two formulas (Isxy)%5 are copies of the same region.
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Proposed solution: nominal labels

® We introduce nominal labels (from hybrid logic), where a
nominal « is interpreted as denoting a unique heap.
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Proposed solution: nominal labels

® We introduce nominal labels (from hybrid logic), where a
nominal « is interpreted as denoting a unique heap.

e Any formula of the form o A A then obeys the principle
(@aNA) ®(aNAT = (an AT
where & is addition on permissions.

® Thus we can repair the faulty CSL proof above by replacing
every instance of Iszy by a Alszy (and adding an initial
step in which we introduce the fresh label «).
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What’s in the paper?

® We define an assertion language including both weak ® and
strong * separating conjunctions, and nominal labels a.
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What’s in the paper?

We define an assertion language including both weak ® and
strong * separating conjunctions, and nominal labels a.

We also include hybrid logic’s jump modality @, A,
meaning A is true at «, which is useful in treating more
complex sharing examples.

We formally establish the needed principles, including

A" x BT
(N A)TO™

(A* B)™
(aNA)T @ (aN AT

Finally we show how our assertion language can be used in
CSL to verify various concurrent programs with sharing.
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Directions for future work

¢ Implementation and automation
® Specification inference and biabduction

® [dentify tractable fragments
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Thanks for listening!

@ James Brotherston, Diana Costa, Aquinas Hobor and John
Wickerson.
Reasoning over Permissions Regions in Concurrent
Separation Logic.
In Proc. CAV-2020.
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