
A unified display proof theory

for bunched logic

James Brotherston

Imperial College London

MFPS 2010
University of Ottawa, 9 May 2010

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. . .).

Examples:

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. . .).

Examples:

• Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. . .).

Examples:

• Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

• Linear logic permits weakening and contraction only for
formulas prefixed with “exponential” modalities;

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. . .).

Examples:

• Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

• Linear logic permits weakening and contraction only for
formulas prefixed with “exponential” modalities;

• Relevant logic replaces some of the standard ‘additive’
connectives, which obey weakening and contraction, with
‘multiplicative’ variants which do not;

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. . .).

Examples:

• Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

• Linear logic permits weakening and contraction only for
formulas prefixed with “exponential” modalities;

• Relevant logic replaces some of the standard ‘additive’
connectives, which obey weakening and contraction, with
‘multiplicative’ variants which do not;

• Bunched logic is like relevant logic, but retains the additive
connectives which relevant logic throws away on
philosophical grounds (e.g. →).

Motivation for bunched logic

• So, bunched logics are essentially obtained by “splicing” an
additive propositional logic with a multiplicative one.

Motivation for bunched logic

• So, bunched logics are essentially obtained by “splicing” an
additive propositional logic with a multiplicative one.

• This gives a nice Kripke-style resource semantics:
Additive connectives have their usual meaning, and
multiplicatives denote resource composition properties:

r |= F1 ∧ F2 ⇔ r |= F1 and r |= F2

r |= F1 ∗ F2 ⇔ r = r1 ◦ r2 and r1 |= F1 and r2 |= F2

(where ◦ is a binary monoid operation).

Motivation for bunched logic

• So, bunched logics are essentially obtained by “splicing” an
additive propositional logic with a multiplicative one.

• This gives a nice Kripke-style resource semantics:
Additive connectives have their usual meaning, and
multiplicatives denote resource composition properties:

r |= F1 ∧ F2 ⇔ r |= F1 and r |= F2

r |= F1 ∗ F2 ⇔ r = r1 ◦ r2 and r1 |= F1 and r2 |= F2

(where ◦ is a binary monoid operation).

• Taking particular models gives us separation logic and
other spatial logics (used in program verification).

The bunched logic family

Additives / multiplicatives can be classical or intuitionistic:

BI

(Heyting, Lambek)

BBI

(Boolean, Lambek)

CBI

(Boolean, de Morgan)

dMBI

(Heyting, de Morgan)

¬∼

∼¬

• Subtitles (X,Y) indicate the underlying algebras.

• Arrows denote addition of classical negations ¬ or ∼.

Bunched logics via elementary logics

Additives: ⊤ ⊥ ¬ ∨ ∧ →
Multiplicatives: ⊤∗ ⊥∗ ∼ ∗∨ ∗ —∗

• IL and CL are standard intuitionistic / classical logic over
the additives;

Bunched logics via elementary logics

Additives: ⊤ ⊥ ¬ ∨ ∧ →
Multiplicatives: ⊤∗ ⊥∗ ∼ ∗∨ ∗ —∗

• IL and CL are standard intuitionistic / classical logic over
the additives;

• LM and dMM are (commutative and associative) Lambek /
de Morgan logic over the multiplicatives;

Bunched logics via elementary logics

Additives: ⊤ ⊥ ¬ ∨ ∧ →
Multiplicatives: ⊤∗ ⊥∗ ∼ ∗∨ ∗ —∗

• IL and CL are standard intuitionistic / classical logic over
the additives;

• LM and dMM are (commutative and associative) Lambek /
de Morgan logic over the multiplicatives;

• Define:
BI = IL + LM

BBI = CL + LM
dMBI = IL + dMM

CBI = CL + dMM

where + is union of minimal proof systems for the logics.

LBI: the BI sequent calculus

• Sequents are Γ ⊢ F where F a formula and Γ a bunch:

Γ ::= F | ∅ | ∅ | Γ ; Γ | Γ , Γ

LBI: the BI sequent calculus

• Sequents are Γ ⊢ F where F a formula and Γ a bunch:

Γ ::= F | ∅ | ∅ | Γ ; Γ | Γ , Γ

• Rules for —∗ are:

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆ , F1 —∗ F2) ⊢ F

Γ , F ⊢ G
(—∗R)

Γ ⊢ F —∗ G

where Γ(∆) is bunch Γ with sub-bunch ∆;

LBI: the BI sequent calculus

• Sequents are Γ ⊢ F where F a formula and Γ a bunch:

Γ ::= F | ∅ | ∅ | Γ ; Γ | Γ , Γ

• Rules for —∗ are:

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆ , F1 —∗ F2) ⊢ F

Γ , F ⊢ G
(—∗R)

Γ ⊢ F —∗ G

where Γ(∆) is bunch Γ with sub-bunch ∆;

• LBI satisfies cut-elimination (Pym ’02).

• Unfortunately cut-elimination breaks if we try to extend
LBI to BBI, dMBI, CBI in the obvious way.

Display calculus: an overview

• Display calculi manipulate consecutions X ⊢ Y , with left-
and right-introduction rules for each logical connective.

Display calculus: an overview

• Display calculi manipulate consecutions X ⊢ Y , with left-
and right-introduction rules for each logical connective.

• Structures X and Y are built from formulas and structural
connectives. Substructures of X ⊢ Y are classified as
antecedent or consequent parts.

Display calculus: an overview

• Display calculi manipulate consecutions X ⊢ Y , with left-
and right-introduction rules for each logical connective.

• Structures X and Y are built from formulas and structural
connectives. Substructures of X ⊢ Y are classified as
antecedent or consequent parts.

• In display calculi, one can rearrange consecutions:

Definition

≡D is a display-equivalence if for any antecedent (consequent)
part Z of X ⊢ Y we have X ⊢ Y ≡D Z ⊢ W (W ⊢ Z).

Display calculus: an overview

• Display calculi manipulate consecutions X ⊢ Y , with left-
and right-introduction rules for each logical connective.

• Structures X and Y are built from formulas and structural
connectives. Substructures of X ⊢ Y are classified as
antecedent or consequent parts.

• In display calculi, one can rearrange consecutions:

Definition

≡D is a display-equivalence if for any antecedent (consequent)
part Z of X ⊢ Y we have X ⊢ Y ≡D Z ⊢ W (W ⊢ Z).

• Belnap ’82 gives a set of syntactic conditions for display
calculi which guarantee cut-elimination.

Display calculus: syntax

• Structures are constructed from formulas and structural
connectives:

Additive Multiplicative Arity Antecedent Consequent
∅ ∅ 0 truth falsity
♯ ♭ 1 negation negation
; , 2 conjunction disjunction
⇒ ⊸ 2 − implication

• Antecedent / consequent parts of consecutions X ⊢ Y are
similar to positive / negative occurrences in formulas.

Display calculus: syntax

• Structures are constructed from formulas and structural
connectives:

Additive Multiplicative Arity Antecedent Consequent
∅ ∅ 0 truth falsity
♯ ♭ 1 negation negation
; , 2 conjunction disjunction
⇒ ⊸ 2 − implication

• Antecedent / consequent parts of consecutions X ⊢ Y are
similar to positive / negative occurrences in formulas.

• We give display calculi for IL,CL,LM and dMM. Form of
antecedent and consequent parts is restricted in each case.

DLCL: a display calculus for CL

Antecedent connectives: ∅ ♯ ;
Consequent connectives: ∅ ♯ ;

Display postulates: X ; Y ⊢ Z <>D X ⊢ ♯Y ; Z <>D Y ; X ⊢ Z

X ⊢ Y ; Z <>D X ; ♯Y ⊢ Z <>D X ⊢ Z ; Y

X ⊢ Y <>D ♯Y ⊢ ♯X <>D ♯♯X ⊢ Y

Logical rules:

F ⊢ X G ⊢ X
(∨L)

F ∨ G ⊢ X

X ⊢ F1 ; F2

(∨R)
X ⊢ F1 ∨ F2

(etc.)

Structural rules:

∅ ; X ⊢ Y
======= (∅L)

X ⊢ Y

X ⊢ Z
(WkL)

X ; Y ⊢ Z
(etc.)

DLLM: a display calculus for LM

Antecedent connectives: ∅ ,

Consequent connectives: ⊸

Display postulates: X , Y ⊢ Z <>D X ⊢ Y ⊸ Z <>D Y , X ⊢ Z

Logical rules:

X ⊢ F G ⊢ Y
(—∗L)

F —∗ G ⊢ X ⊸ Y

X ⊢ F ⊸ G
(—∗R)

X ⊢ F —∗ G
(etc.)

Structural rules:

∅ , X ⊢ Y
======== (∅L)

X ⊢ Y

W , (X , Y) ⊢ Z
============= (MAL)
(W , X) , Y ⊢ Z

Display calculi for bunched logics
We obtain display calculi DLL for L ∈ {BI,BBI,dMBI,CBI} by:

DLL1+L2
= DLL1

+ DLL2

where + is component-wise union of specifications.
The following hold for all our calculi:

Display calculi for bunched logics
We obtain display calculi DLL for L ∈ {BI,BBI,dMBI,CBI} by:

DLL1+L2
= DLL1

+ DLL2

where + is component-wise union of specifications.
The following hold for all our calculi:

Proposition (Display)

≡D, given by the display postulates of DLL, is indeed a
display-equivalence for DLL.

Display calculi for bunched logics
We obtain display calculi DLL for L ∈ {BI,BBI,dMBI,CBI} by:

DLL1+L2
= DLL1

+ DLL2

where + is component-wise union of specifications.
The following hold for all our calculi:

Proposition (Display)

≡D, given by the display postulates of DLL, is indeed a
display-equivalence for DLL.

Theorem (Soundness / Completeness)

X ⊢ Y is DLL-provable iff its formula translation is provable in
the minimal proof system for L.

Display calculi for bunched logics
We obtain display calculi DLL for L ∈ {BI,BBI,dMBI,CBI} by:

DLL1+L2
= DLL1

+ DLL2

where + is component-wise union of specifications.
The following hold for all our calculi:

Proposition (Display)

≡D, given by the display postulates of DLL, is indeed a
display-equivalence for DLL.

Theorem (Soundness / Completeness)

X ⊢ Y is DLL-provable iff its formula translation is provable in
the minimal proof system for L.

Theorem (Cut-elimination)

Any DLL proof of X ⊢ Y can be algorithmically transformed
into a cut-free DLL proof of X ⊢ Y .

Translating LBI into DLBI

Recall the LBI rules for —∗:

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆ , F1 —∗ F2) ⊢ F

Γ , F ⊢ G
(—∗R)

Γ ⊢ F —∗ G

(—∗R) has a direct equivalent in DLBI, while (—∗L) can be
derived in DLBI as follows:

Translating LBI into DLBI

Recall the LBI rules for —∗:

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆ , F1 —∗ F2) ⊢ F

Γ , F ⊢ G
(—∗R)

Γ ⊢ F —∗ G

(—∗R) has a direct equivalent in DLBI, while (—∗L) can be
derived in DLBI as follows:

∆ ⊢ F1

Γ(F2) ⊢ F
(D≡)

F2 ⊢ X
(—∗L)

∆ , F1 —∗ F2 ⊢ X
(D≡)

Γ(∆ , F1 —∗ F2) ⊢ F

Translation preserves cut-freeness of proofs.

Translating DLBI into LBI

For any DLBI consecution X ⊢ Y define pX ⊢ Y q as the result
of maximally applying transformations:

X ⊢ Y ⇒ Z 7→ X ; Y ⊢ Z

X ⊢ Y ⊸ Z 7→ X , Y ⊢ Z

Note pX ⊢ Y q is always an LBI sequent.

Translating DLBI into LBI

For any DLBI consecution X ⊢ Y define pX ⊢ Y q as the result
of maximally applying transformations:

X ⊢ Y ⇒ Z 7→ X ; Y ⊢ Z

X ⊢ Y ⊸ Z 7→ X , Y ⊢ Z

Note pX ⊢ Y q is always an LBI sequent.

Then the rules of DLBI are LBI-derivable under p−q, e.g.:

pX ⊢ Fq pG ⊢ Y q

pX , F —∗ G ⊢ Y q

=
X ⊢ F Γ(G) ⊢ H

Γ(X , F —∗ G) ⊢ H

Translation again preserves cut-freeness of proofs.

Display calculi vs. sequent calculi

• By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs
in LBI and cut-free proofs in DLBI.

So LBI can be seen as an optimised DLBI.

Display calculi vs. sequent calculi

• By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs
in LBI and cut-free proofs in DLBI.

So LBI can be seen as an optimised DLBI.

• However, display proofs for BBI, dMBI, CBI do not easily
translate to sequent proofs in the same way. E.g., it is not
obvious how to translate the DLBBI consecution
F , ♯G ⊢ H into a sequent without the unary ♯.

Display calculi vs. sequent calculi

• By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs
in LBI and cut-free proofs in DLBI.

So LBI can be seen as an optimised DLBI.

• However, display proofs for BBI, dMBI, CBI do not easily
translate to sequent proofs in the same way. E.g., it is not
obvious how to translate the DLBBI consecution
F , ♯G ⊢ H into a sequent without the unary ♯.

• Thus we claim that our display calculi really are canonical
proof systems for the bunched logics.

Applications

• Cut-free proof search is still very difficult (display rules,
structural rules).

Applications

• Cut-free proof search is still very difficult (display rules,
structural rules).

• In general, for both display and sequent calculi:

cut-elimination 6⇒ (semi)decidability
(cf. linear logic, relevant logic, arithmetic . . .)

Applications

• Cut-free proof search is still very difficult (display rules,
structural rules).

• In general, for both display and sequent calculi:

cut-elimination 6⇒ (semi)decidability
(cf. linear logic, relevant logic, arithmetic . . .)

• Indeed, while BI is known decidable (Galmiche et al. ’05),
BBI and CBI are known undecidable (Brotherston and
Kanovich ’10, Larchey-Wendling and Galmiche ’10).

Applications

• Cut-free proof search is still very difficult (display rules,
structural rules).

• In general, for both display and sequent calculi:

cut-elimination 6⇒ (semi)decidability
(cf. linear logic, relevant logic, arithmetic . . .)

• Indeed, while BI is known decidable (Galmiche et al. ’05),
BBI and CBI are known undecidable (Brotherston and
Kanovich ’10, Larchey-Wendling and Galmiche ’10).

• Cut-elimination provides structure and removes infinite
branching points from the proof search space.

Applications

• Cut-free proof search is still very difficult (display rules,
structural rules).

• In general, for both display and sequent calculi:

cut-elimination 6⇒ (semi)decidability
(cf. linear logic, relevant logic, arithmetic . . .)

• Indeed, while BI is known decidable (Galmiche et al. ’05),
BBI and CBI are known undecidable (Brotherston and
Kanovich ’10, Larchey-Wendling and Galmiche ’10).

• Cut-elimination provides structure and removes infinite
branching points from the proof search space.

• Our calculi could be potentially be used in interactive
theorem proving tools (proof-by-pointing) or to define
partial search strategies.

