A unified display proof theory
for bunched logic

James Brotherston

Imperial College London

MFPS 2010
University of Ottawa, 9 May 2010

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. ..).

Examples:

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. ..).

Examples:

e Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. ..).

Examples:

e Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

e Linear logic permits weakening and contraction only for
formulas prefixed with “exponential” modalities;

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. ..).

Examples:
e Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

e Linear logic permits weakening and contraction only for
formulas prefixed with “exponential” modalities;

e Relevant logic replaces some of the standard ‘additive’
connectives, which obey weakening and contraction, with
‘multiplicative’ variants which do not;

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary
classical logic (weakening, contraction, associativity, exchange. ..).

Examples:

e Lambek calculus totally rejects weakening and contraction
(commutativity and associativity are optional too);

e Linear logic permits weakening and contraction only for
formulas prefixed with “exponential” modalities;

e Relevant logic replaces some of the standard ‘additive’
connectives, which obey weakening and contraction, with
‘multiplicative’ variants which do not;

e Bunched logic is like relevant logic, but retains the additive
connectives which relevant logic throws away on
philosophical grounds (e.g. —).

Motivation for bunched logic

e So, bunched logics are essentially obtained by “splicing” an
additive propositional logic with a multiplicative one.

Motivation for bunched logic

e So, bunched logics are essentially obtained by “splicing” an
additive propositional logic with a multiplicative one.

e This gives a nice Kripke-style resource semantics:
Additive connectives have their usual meaning, and
multiplicatives denote resource composition properties:

’I“):Fl/\FQ i=4 r):Flandr):FQ
reF*xF, < r=riorgandr = Fj and ro E F

(where o is a binary monoid operation).

Motivation for bunched logic

e So, bunched logics are essentially obtained by “splicing” an
additive propositional logic with a multiplicative one.

e This gives a nice Kripke-style resource semantics:
Additive connectives have their usual meaning, and
multiplicatives denote resource composition properties:

’I“):Fl/\FQ i=4 r):Flandr):FQ
reF*xF, < r=riorgandr = Fj and ro E F

(where o is a binary monoid operation).

e Taking particular models gives us separation logic and
other spatial logics (used in program verification).

The bunched logic famaly

Additives / multiplicatives can be classical or intuitionistic:

CBI
(Boolean, de Morgan)
7 A\
dMBI BBI
(Heyting, de Morgan) (Boolean, Lambek)
Ay sd
BI

(Heyting, Lambek)

e Subtitles (X,Y) indicate the underlying algebras.

e Arrows denote addition of classical negations — or ~.

Bunched logics via elementary logics

Additives: T L -V A =

Multiplicatives: T* 1*¥ ~ ¥V x —*

e IL and CL are standard intuitionistic / classical logic over
the additives;

Bunched logics via elementary logics

Additives: T L -V A =

Multiplicatives: T* 1*¥ ~ ¥V x —*

e IL and CL are standard intuitionistic / classical logic over
the additives;

e LM and dMM are (commutative and associative) Lambek /
de Morgan logic over the multiplicatives;

Bunched logics via elementary logics

Additives: T L -V A =
Multiplicatives: T* 1*¥ ~ ¥V x —*

IL and CL are standard intuitionistic / classical logic over
the additives;

LM and dMM are (commutative and associative) Lambek /
de Morgan logic over the multiplicatives;

Define:
BI = IL+LM
BBI = CL+LM
dMBI = IL+ dMM

CBI = CL+dMM

where + is union of minimal proof systems for the logics.

LBI: the BI sequent calculus

e Sequents are I' = F where F' a formula and I" a bunch:

r«=F|0|o|T;T|,T

LBI: the BI sequent calculus

e Sequents are I' = F where F' a formula and I" a bunch:
r«=F|0|o|T;T|,T

e Rules for — are:
AR F T'(F)FF ' FEG
- — (-
INA,F, «F)FF 'FF -G

where T'(A) is bunch I" with sub-bunch A;

LBI: the BI sequent calculus

Sequents are I' - F' where F' a formula and I' a bunch:
r«=F|0|o|T;T|,T
Rules for — are:

AFF T(R)FF I, FFG

where T'(A) is bunch I" with sub-bunch A;
LBI satisfies cut-elimination (Pym ’02).

Unfortunately cut-elimination breaks if we try to extend
LBI to BBI, dMBI, CBI in the obvious way.

Display calculus: an overview

e Display calculi manipulate consecutions X F Y, with left-
and right-introduction rules for each logical connective.

Display calculus: an overview

e Display calculi manipulate consecutions X F Y, with left-
and right-introduction rules for each logical connective.

e Structures X and Y are built from formulas and structural
connectives. Substructures of X Y are classified as
antecedent or consequent parts.

Display calculus: an overview

e Display calculi manipulate consecutions X F Y, with left-
and right-introduction rules for each logical connective.

e Structures X and Y are built from formulas and structural
connectives. Substructures of X Y are classified as
antecedent or consequent parts.

e In display calculi, one can rearrange consecutions:
Definition

=p is a display-equivalence if for any antecedent (consequent)
part Z of X FY wehave X FY =p ZFW (W 2).

Display calculus: an overview

e Display calculi manipulate consecutions X F Y, with left-
and right-introduction rules for each logical connective.

e Structures X and Y are built from formulas and structural
connectives. Substructures of X Y are classified as
antecedent or consequent parts.

e In display calculi, one can rearrange consecutions:
Definition

=p is a display-equivalence if for any antecedent (consequent)
part Z of X FY wehave X FY =p ZFW (W 2).

e Belnap ’82 gives a set of syntactic conditions for display
calculi which guarantee cut-elimination.

Display calculus: syntax

e Structures are constructed from formulas and structural
connectives:

Additive Multiplicative — Arity ~ Antecedent — Consequent

) 1% 0 truth falsity

1 b 1 negation negation

; , 2 conjunction disjunction
= —o 2 — implication

e Antecedent / consequent parts of consecutions X F Y are
similar to positive / negative occurrences in formulas.

Display calculus: syntax

e Structures are constructed from formulas and structural
connectives:

Additive Multiplicative — Arity ~ Antecedent — Consequent

) 1% 0 truth falsity

1 b 1 negation negation

; , 2 conjunction disjunction
= —o 2 — implication

e Antecedent / consequent parts of consecutions X F Y are
similar to positive / negative occurrences in formulas.

e We give display calculi for IL, CL, LM and dMM. Form of
antecedent and consequent parts is restricted in each case.

DLcy: a display calculus for CL

Antecedent connectives:) f ;
Consequent connectives: 0§ f ;
Display postulates: X ;Y FZ <>p XFHY;Z <>p Y; XFHZ
XFY ; Z <>p XY Z <>p XHZ,Y
XFY <>p #fYHEX <>p #XFY
Logical rules:

FHFX GFHX XEF;Fs
T T v ———(VR) (etc)
FVGEFX XFFVFs

Structural rules:

0; XFY X+Z
— (L) (WKL) (etc.)
XrY XYz

DLiyv: a display calculus for LM

Antecedent connectives: @ |
Consequent connectives: —o
Display postulates: X Y2 <>p XFY —oZ <>p YV, XFHZ

Logical rules:

X+HF GFRY XFHFF—G
_ (L) ———— (—*R) (etc.)
F+«GFX oY XFF -G
Structural rules:
o, XFY wW,(X,Y)FZ
= (9L) =———= (MAL)

XFY WwW,X),Y+Z

Display calcult for bunched logics
We obtain display calculi DL, for £ € {BI, BBI, dMBI, CBI} by:

DL£1+£2 = DLE1 + DLL2

where + is component-wise union of specifications.
The following hold for all our calculi:

Display calcult for bunched logics
We obtain display calculi DL, for £ € {BI, BBI, dMBI, CBI} by:

DL£1+£2 = DLE1 + DLL2
where + is component-wise union of specifications.
The following hold for all our calculi:

Proposition (Display)

=p, given by the display postulates of DL, is indeed a
display-equivalence for DL .

Display calculi for bunched logics
We obtain display calculi DL, for £ € {BI, BBI, dMBI, CBI} by:

DL£1+£2 = DLE1 + DLL2
where + is component-wise union of specifications.
The following hold for all our calculi:
Proposition (Display)
=p, given by the display postulates of DL, is indeed a
display-equivalence for DL .
Theorem (Soundness / Completeness)

X FY is DLg-provable iff its formula translation is provable in
the minimal proof system for L.

Display calculi for bunched logics
We obtain display calculi DL, for £ € {BI, BBI, dMBI, CBI} by:

DL£1+£2 = DLE1 + DLL2

where + is component-wise union of specifications.
The following hold for all our calculi:

Proposition (Display)

=p, given by the display postulates of DL, is indeed a
display-equivalence for DL .

Theorem (Soundness / Completeness)

X FY is DLg-provable iff its formula translation is provable in
the minimal proof system for L.

Theorem (Cut-elimination)

Any DL, proof of X BY can be algorithmically transformed
into a cut-free DL, proof of X Y.

Translating LBI into DLp;

Recall the LBI rules for —:
AFF T(F)kFF ' FG
—L — (%
NA,F, «F)FF I'FF @G

(—R) has a direct equivalent in DLpy, while (—L) can be
derived in DLpy as follows:

Translating LBI into DLp;

Recall the LBI rules for —:
AFF T(F)kFF ' FG
—L — (%
NA,F, «F)FF I'FF @G

(—R) has a direct equivalent in DLpy, while (—L) can be
derived in DLpy as follows:

D(F)FF
—— (D)

A+ F hBEX
(L)

A,FlﬁkFQI—X
D=)

T(A,F, «F)FF

Translation preserves cut-freeness of proofs.

Translating DLgy tnto LBI

For any DLpy consecution X Y define "X F Y as the result
of maximally applying transformations:

XFY=>Z — X:YFZ
XFY -2 — X, Y+-Z

Note "X F Y is always an LBI sequent.

Translating DLgy wnto LBI

For any DLpy consecution X Y define "X F Y as the result
of maximally applying transformations:

XFY=Z7 — X;YFHZ
XFY o2 —» X, YFHZ

Note "X F Y is always an LBI sequent.
Then the rules of DLp are LBI-derivable under "—7, e.g.:

XFFTGRYT X+F ING)FH

"X, F+«GFY" IX,F+G)FH

Translation again preserves cut-freeness of proofs.

Display calculi vs. sequent calculi

e By the two previous translations we have:

Proposition
There is a one-to-many correspondence between cut-free proofs
in LBI and cut-free proofs in DLp;.

So LBI can be seen as an optimised DLp;j.

Display calculi vs. sequent calculi

e By the two previous translations we have:

Proposition
There is a one-to-many correspondence between cut-free proofs
in LBI and cut-free proofs in DLp;.

So LBI can be seen as an optimised DLp;j.

e However, display proofs for BBI, dMBI, CBI do not easily
translate to sequent proofs in the same way. E.g., it is not
obvious how to translate the DLpp; consecution
F 4G+ H into a sequent without the unary f.

Display calculi vs. sequent calculi

e By the two previous translations we have:
Proposition
There is a one-to-many correspondence between cut-free proofs
in LBI and cut-free proofs in DLp;.
So LBI can be seen as an optimised DLp;j.

e However, display proofs for BBI, dMBI, CBI do not easily
translate to sequent proofs in the same way. E.g., it is not
obvious how to translate the DLpp; consecution
F 4G F H into a sequent without the unary §.

e Thus we claim that our display calculi really are canonical
proof systems for the bunched logics.

Applications

e Cut-free proof search is still very difficult (display rules,
structural rules).

Applications

e Cut-free proof search is still very difficult (display rules,
structural rules).

e In general, for both display and sequent calculi:

cut-elimination # (semi)decidability
(cf. linear logic, relevant logic, arithmetic ...)

Applications

e Cut-free proof search is still very difficult (display rules,
structural rules).
e In general, for both display and sequent calculi:
cut-elimination # (semi)decidability
(cf. linear logic, relevant logic, arithmetic ...)
e Indeed, while BI is known decidable (Galmiche et al. '05),

BBI and CBI are known undecidable (Brotherston and
Kanovich ’10, Larchey-Wendling and Galmiche ’10).

Applications

Cut-free proof search is still very difficult (display rules,
structural rules).

In general, for both display and sequent calculi:
cut-elimination # (semi)decidability
(cf. linear logic, relevant logic, arithmetic ...)
Indeed, while BI is known decidable (Galmiche et al. ’05),

BBI and CBI are known undecidable (Brotherston and
Kanovich ’10, Larchey-Wendling and Galmiche ’10).

Cut-elimination provides structure and removes infinite
branching points from the proof search space.

Applications

Cut-free proof search is still very difficult (display rules,
structural rules).

In general, for both display and sequent calculi:

cut-elimination # (semi)decidability
(cf. linear logic, relevant logic, arithmetic ...)

Indeed, while BI is known decidable (Galmiche et al. ’05),
BBI and CBI are known undecidable (Brotherston and
Kanovich ’10, Larchey-Wendling and Galmiche ’10).

Cut-elimination provides structure and removes infinite
branching points from the proof search space.

Our calculi could be potentially be used in interactive
theorem proving tools (proof-by-pointing) or to define
partial search strategies.

