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Introduction

Classical CS questions: is my program memory-safe, and
does it terminate?

Refined version: is my program safe and/or terminating,
given that it satisfies some precondition?

Even more refined version: can we find a reasonable
precondition under which my program is safe and/or
terminating?

In this talk, we focus on this last question, using inductive
definitions in separation logic to describe preconditions.
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A simple example

Consider the following list traversal program:
whilex # nildox = x.next od;
Which preconditions guarantee safe termination?
x = nil

z — nil
=z’ xx’ — nil

Most general solution is an acyclic linked list, given by
x=nil = list(x)
x #nilxz—yxlist(y) = list(z)
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analyse industrial code (e.g. SPACEINVADER, SLAYER)

These analysers rely on inductive predicates to describe
data structures manipulated by programs (lists, trees etc.)

Presently, these tools are limited to a few hard-wired such
definitions. . .

... which means they must fail, or ask for advice, when
encountering a “foreign” data structure.

It would be nice if we could automatically infer the
definitions of these data structures.
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Abduction

Proposed by Charles Peirce in the late C19th as a pragmatic
process of formulating scientific hypotheses:
... the hypothesis cannot be admitted, even as a
hypothesis, unless it be supposed that it would account
for the facts or some of them. The form of inference,
therefore, is this:
The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

(Peirce, Pragmatism and Abduction, 1903)

Our aim is to abduce a precondition or “hypothesis” that would
justify the “surprising fact” of program safety / termination.
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Overview of our approach

Our approach builds on the cyclic termination proofs in

@ J. Brotherston, R. Bornat and C. Calcagno.
Cyclic proofs of program termination in separation logic.
In Proceedings of POPL, 2008.

Given a program, we search for a cyclic proof that the
program has the desired property.

When we inevitably get stuck, we are allowed to abduce
(i.e. guess) definitions to help us out.

We employ lots of heuristics to help the search process.

Tool, CABER, implemented on top of cyclic theorem prover
CYCLIST:
@ J. Brotherston, N. Gorogiannis, and R.L. Petersen.

A generic cyclic theorem prover.
In APLAS 2012. w2
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e Expressions are either a variable or nil.

e Branching conditions B and commands C' are given by

B = x|E=FE|E+#FE

C = e|le:=E,C|lae:=E.f;C|Ef:=FE;C|
free(E); C |z := new(); C'|
if BthenCfi; C' | while BdoCod; C

where E ranges over expressions, x over variables, n over
field names and j over N.

e A program is given by fields nq,...,ng; C' where each n;
is a field name and C' a command.
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e (' is a command;

e s:Var — Val is a stack;

e h:Lloc —g, Val is a heap (we write o for union of disjoint
heaps).

e (C,s,h) is called safe if there is no computation sequence
(C,s,h) ~* fault. And (C,s,h) | means there is no infinite
computation sequence (C, s, h) ~ ...

Proposition (Safety / termination monotonicity)
If (C,s,h) is safe and ho h' defined then (C,s,hoh') is safe.
If (C,s,h) | and hoh' defined then (C,s,hoh') |.
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e Formulas F' are given by
F = E=F|E#FE|emp|E—E|PE|FxF

where P ranges over predicate symbols (of appropriate
arity).

e An inductive rule for predicate P is a rule of the form
F= Pt

e Semantics given by standard forcing relation s,h =g F
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where F' is a formula and C a command.
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Proof rules

e We write proof judgements of the form
F+C
where F' is a formula and C' a command.
e Symbolic execution rules capture the effect of commands.

e E.g.,if Cisxz:=FE.f;C’, we have the symbolic execution
rule:

x :Eﬂx//x] *(Fx Ew E)2'/z] - C'
FxE—-EFRFC

E| > f

(Here, f € N and E7 is the fth element of E. The variable
a2’ is a fresh variable used to record the “old value” of x.)
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Proof rules (contd.)
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Proof rules (contd.)

e We also have logical rules affecting the precondition, e.g.:

FrEC

———— II'CIl (Frame)
FxGrEC

e The inductive rules for a predicate P determine its
unfolding rule. E.g., define “binary tree” predicate bt by

r=nil = bt(z)
x #nilxxz— (y,2) xbt(y) *bt(z) = bt(x)

This gives the unfolding rule:

Fxu=niltC F s u # nil xu — (y,z) x bt(y) x bt(z) - C
F «bt(u) - C

13/ 27
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Cyclic proofs

e A cyclic pre-proof is a derivation tree with back-links:

(Inference)

e Safety proof condition: there are infinitely many symbolic
executions on every infinite path.

e Termination condition: some inductive predicate is

unfolded infinitely often on every infinite path.
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Soundness

Theorem
Fiz rule set ®, and program C, and suppose there is a cyclic

proof P of F + C. Let stack s and heap h satisfy s,h =g F.

o If P satisfies the safety condition, (C,s,h) is safe;
o If P satisfies the termination condition, (C,s,h) |.

Proof.
Inductive argument over proofs.
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Problem statement
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PxFC isvalid wrt. ®.
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Problem statement

Initial problem: Given program C with input variables x,
find inductive rules ® such that

PxFC isvalid wrt. ®.

where P is a fresh predicate symbol, and “valid” may have
either a safety or a termination interpretation.

General problem: Given inductive rules ® and subgoal
F + C, find inductive rules ®’ such that

FFEC isvalid wrt. ®U @

Our approach: search for a cyclic safety/termination proof
of F' C, inventing inductive rules as necessary.
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Principia abductica (I)

Principle I (Proof search priorities)

Priority 1: apply axiom rule
Priority 2: form backlink

Priority 3: apply symbolic execution

Principle II (Guessing things)

e In order to serve Priorities 2 and 3 we are allowed to apply
logical rules and/or abduce inductive rules.

o We may only abduce rules for undefined predicates.

o When we abduce rules for a predicate P in the current
subgoal, we immediately unfold that predicate in the subgoal.
(We write A(P) for a combined abduction-and-unfold step.)
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Principia abductica (II)

When forming back-links, we need to avoid:

e violating the soundness condition on cyclic proofs;
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Principia abductica (II)

When forming back-links, we need to avoid:
e violating the soundness condition on cyclic proofs;

e abducing trivially inconsistent definitions like Px = Px:

S PxkO
‘--5 PxF0

Principle III (Avoidance tactic)

We may not form a backlink yielding an infinite path that
violates the safety condition, even if searching for a termination

proof.
We can use a model checker to enforce Principle II1.
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Worked example: binary tree search

:while (z # nil){
Dif(x)

rxe=uwl

:else

rxi=aa )

e
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3 ioise 2 (5,2) % Po(@,,2) = Pa(a)
iemar ) Poy)+ Pilw,y2) = Palwy,2)
5:¢€
2’ # nilx Co
2’ (2,2) * Po(x) * Py(a’, @, 2) AR
3
2’ # nilx
Fo
' (x,2) * P3(2! 2, 2) ,
T = T.
x # nilx Lo
x> (y,2) * P3(,9,2) A
2
z # nil % Py(z) -2 z #nil* Py(z) 4
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2;1.7, ; z #nil % Py(z) = Po(a)
3 o1se @ (,2)* Py(w,9,2) = Pa(a)
Lo } Poly) = Py(z,y,2) = Ps(x,y,2)
5:¢€
Py(z)FO
O( ) (Frame)
a’ # nilx Co
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2
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Worked example: binary tree search

0: while (v # nil){ z=nilx Pi(z) = Py(x)
;lf(;k) ) ;in:l*l’;(;) épg(;)
3:Ii_ T T (y,2) * P3(2,y,2) = Pa(x)

: :else Po(y) * Py(z,y,2) = Ps(z,y,2)
5:

rxi=aa )

""""""""""" Po(l) F0
/ ; (Frame)
, 2/ % nilx
| s me s
' @ x,2) % Py(z) * Py(2, 2, 2
; i T ARy)
] T nilx

FO

i ' (x,2) * P3(2! 2, 2)
' z =zl
, T # nilx
; ? » ko
| o By |
i z # nil % Py(z) -2 z #nil* Py(z) 4
' - if
L or=nilxPi(2) k5 2 #nil% Po(a) - 1 '
| - whit - while
vz =nilxP(z)F0 x # nilx Py(x) F 0
\ A(Po)
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cx=al x s (y,2) % Py(2,y,2) = Py(x)
2) (

:else
e wr ) Po(y) * Pa(z,y, 2

U W N = O

""""""""""" Po(.L) =0
! ; . (Frame)
3 z’in(lx*z)*P(x)*P(ac’xz) 0
3 /#, g 0 a(T’, @, APy i
. ; * ; *
o’ # ni Lo ' #ni Lo
; z' i (x,2) * Py(af, @, 2) ' = (y,2) x Py(a',y, )
' z =zl T =T
i x # nilx ; Ly x # nilx N sy
| o) Py o () s Piays)
| z # nil % Py(z) -2 z #nil* Py(z) 4
‘ if
oz =nilxP(z )FS x # nil* Py(z)
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: i (j) . z #nilx Pa(z) = Py(x)

cx=al x s (y,2) % Py(2,y,2) = Py(x)
2) (

:else
e wr ) Po(y) * Pa(z,y, 2

U W N = O

""""""""""" Po(.L)FO
! ; . (Frame) /?é .
. a *
‘ I’;ézl*)P()P(’ ) 70 2 )+ )« P an)
' 2w (x,2) x Po(z) * Py(a' ), 2 ' (y,2) * Po(y) * Py(2',y,
: /% ; 0 4T, APy / y-l oly 4T,y Py
‘ ; * ;
a’ # ni Co ' # nilx Co
; z' i (x,2) * Py(af, @, 2) ' (y,7) x Py(a',y, )
! z =zl T = xr
i x # nilx ; Ly  # nilx N sy
; x> (y,2) x Pa(,y,2) AR x> (y,2) * P3(x,y, 2) )
| z # nil % Py(z) -2 z #nil* Py(z) 4
' if
oz =nilxP(z )FS x # nil* Py(z)
! whit while
.z =nil*P(z)F0 x # nil % Py(w )FO
' A(R)
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U W N = O

Worked example: binary tree search

:while (z # nil){

- z =nilx Pi(z) = Py(x)
S o il Py(z) = Polx)
Cetse 2 (5,2) % Po(@,,2) = Pa(a)
s ) Ro(y) * Pa(w,y,2) = Po(a,y,2)
: f s Py(z) * Ps(z,y,2) = Py(z,y,z2)
""""""""""" Po(.L) F0
(Frame)
a’ # nilx Co 2’ # nilx Co
' (x,2) * Po(z) * Py(a/, z, 2) AR ' (y,x) * Po(y) * Py(a',y, ) -
3 3
2’ # nilx 2! # nilx
FO FO
o' o (@,2) * Po(e’,,2) , @ o (y,2) * Py(a’,9.)
T = T. = T.r
x # nilx x # nilx
2 =4
z = (y,2) * P3(2,y,2) T = (y,2) x P3(a,y,2)
A(P2) (P»)

z # nil % Py(z) -2

c=nilxPi(x)F5

z #nilx Py(z) F1

z=nilxP(z) -0

x # nilx Py(x) F 0
A
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Worked example: binary tree search

:while (z # nil){

0 .
- z =nilx Pi(z) = Py(x)
1l z#nilx Py(z) = Polz)
3 iorme 2 (5,2) % Po(@,,2) = Pa(a)
b Po(y) « Py(z,9,2) = Py(w,y,2)
sl Po(2) % Py(w,y.2) = Pala,y, =)
x' % nilx Lo
""""""""""" Py(z) -0 2’ = (y,x) * Po(y) * Po(x) * Ps(a/, y, x)
' £ il e A
x
s (5,2) ¢ Poe) < Pyt z,z) | s (4,0)  Poly) * Puey2)
z x,2) % Po(z) * Py(a!,z, 2 @ o) * Po(y) * Py(a,y, @
o CLEEL APy ,#y_l e )
x nix x niix
=0 =0
o' = (3, 2) % P3(a’ @, 2) o' (y,2) * Py(2,y, @)
r = x.l = z.r
T # nilx x # nilx
7é()P( ) 72 #<>P< ) 7
z— (y,2) % P3(x,y, 2 z— (y,2) * T,Y, 2
Lo nY ARy pE Y )

z # nil % Py(z) -2

c=nilxPi(x)F5

z #nil* Py(z) 4
if

z #nilx Py(z) F1

=nilxP(z)F0

x # nilx Py(x) F 0
A

while
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Worked example: binary tree search

0:ubdle (= # nih{ @ =nilxPi(z) = Pya)
1l £ nilx Py(z) = Polz)
dafl_r x> (y,2) * Ps(z,y,2) :>P2(JL
b Ro(y) * Pa(w,y,2) = Po(a,y,2)
sie Po(z) * Ps(x,y,2) = Pu(x 7/7 z)
(Frame)
' % nilx Lo
--------------------- Py(z) 0 7 s (y,x) * Poly) * Po() * P
— o(x) (Frome) H/(;/Il)* 0(y) * Po(x) * Ps(a',y, ) AP
a nilx nix
Ve Pt NN T
= * * = (Y, @) * Y) * Y, T
@’ J:zl o ACR N A ZL/ ylx 0(y) * Pa(a!,y, @ )
2’ # nilx Co a’ # nilx Lo
2’ = (,2) * Py(a', @, 2) , 2’ = (y,2) * P3(2' y,2)
T = T. = T.r
x # nilx Lo x # nilx L
o @) Pleys) o0 ) Piays)
z # nil % Py(z) -2 z #nil* Py(z) 4
if
L—mI*Pl()FS z #nilx Py(z) F1
wirtt while
z =nil* P(xz)F 0 x # nilx Py(x) F 0
A(Po)
""""""""" > P[)(T)}_O
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Worked example: binary tree search

:while (z #n

in{

0 .
- z =nilx Pi(z) = Py(x)
1l o il Py(z) = Polx)
3 ioise @ (5,2) % Po(a,y2) = Pala)
b Ro(y) * Pa(w,y,2) = Po(a,y,2)
5: T Py(z) * Ps(z,y,2) = Py(z,y,z2)
. Po(a) FO ---ommmmmmmoe ™
' % nilx Lo 4
""""""""""" Po(z) FO (Frame &' = (y,x) * Po(y) * Po(x) x Ps(a',y, 2) ary
rame 73
o # il » T #nils y
' (x,2) * Po(z) * Py(a/, z, 2) AR ' (y,x) * Po(y) * Py(a',y, ) -
3 3
2’ # nilx Co 2’ # nilx o
z' i (x,2) * Py(af, @, 2) e al ' (y,7) x Py(a',y, ) .
x # nilx Lo S x # nilx L s
o) Py oo D) s P

z # nil % Py(z) -2

z #nil* Py(z) 4

x = nil* P (x )FS

z # il + Py() - 1 ¥

z =nil* P(xz)F 0 o

while
x # nil x Py(x )FO




Sitmplifying inductive rule sets

x =nil: P(x) Py(z
x # nil : Py() Py
= (y, 2) * P3(3,y,

R
&
semss

z)
Po(y) * Py(z,y, 2)
Po(z) * Ps(2,y, 2)
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;

)
)
)*P3(I Y, 2)
2)
z)
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;

z=nil: Pi(z) = Py(z) x = nil : emp

x #nil: Po(z) = Py(z) x # nil : Pa(x)

x> (y,2) * Ps(z,y,2) = Pa(x) = x> (y,2)* Ps(2,y,2)
Po(y) * Pa(z,y,2) = Ps(z,y,2) PO( ) * P4(x Y, 2)
PO(Z)*L) (1 Y,z ) = P4($,;lj,2) (Z)
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;

e eliminate redundant parameters;

z=nil: Pi(z) = P(z) z=nil:emp = Py(z)

x #nil: Po(z) = Py(z) z #nil: Po(z) = Po(x)

z = (y,2) * P3(z,y,2) = Paz) = o= (y,2)* P3(z,y,2) = Px)
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;

e climinate redundant parameters;

z=nil: Pi(z) = P(z) x = nil : emp
x #nil: Po(z) = Py(z) x # nil : Pa(x)
T (y,2) * Py(2,y,2) = Pa(x) =z (y,2)x P32y, 2)
Po(y) = Pa(w,y,2) = DPs(x,y,2) Py )*P4(I Y, 2)
PO( )*}) (1 Y,z ) = P4($,;lj,2) (Z)
I
z = nil : emp
x #nil: Pa(x)

x = (y,2) % Ps(x,y)
Pg( )*P1E7;
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;
e eliminate redundant parameters;

¢ inline single-clause predicates.

z=nil: Pi(z) = P(x) z=nil:emp = Py(z)
x #nil: Po(z) = Py(z) z #nil: Po(z) = Po(x)

z = (y,2) * P3(z,y,2) = Paz) = o= (y,2)* P3(z,y,2) = Px)
Po(y)+ Palw ) = Po(wy,2) P()*Pm 12) = Pyny2)
Polz)x Pyl ) = Palay2) B(s) = Piry.2)

I
x=nil:emp = PFPy(z)
x #nil: Po(z) =  Po(x)
x> (y,2) * Ps(x,y) = Py(v)
Pg(>*P1<7> = Pyny)
Rz = Pi2)
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;

e eliminate redundant parameters;

¢ inline single-clause predicates.

R
=
S

z = (y,2
PO(Z/)*P4(I7Z/7Z P3(z,y,2)
Py(z) % Ps(x,y,2 Py(z,y, 2)

z=nil:emp = Py(z)
x#Enilx e (y,2) % Py(y) « Po(z) = Po(a)

z:nil:emp

z— (y, )*Pg(ry,

)
P( )*P4(T Y, 2)
Po(z)

I
z = nil : emp
x #nil . Pa(x)
x = (y,2) % Ps(x,y)
Pg( )*P1E7;
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;

e eliminate redundant parameters;

¢ inline single-clause predicates.

R
=
S

z = (y,2
PO(Z/)*P4(I7Z/7Z P3(z,y,2)
Py(z) % Ps(x,y,2 Py(z,y, 2)

(nil-terminated binary tree)

z=nil:emp = Py(z)
x#Enilx e (y,2) % Py(y) « Po(z) = Po(a)

z:nil:emp

z— (y, )*Pg(ry,

)
P( )*P4(T Y, 2)
Po(z)

I
z = nil : emp
x #nil: Pa(x)
x = (y,2) % Ps(x,y)
Pg( )*P1E7;

ey
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Simplifying inductive rule sets

¢ instantiate undefined predicates to emp;

e eliminate redundant parameters;

¢ inline single-clause predicates.

e remove unsatisfiable clauses (not shown)

R
=
S

T = ( Y,z —
Po(y)*P4(I7Z/7Z Ps(2,y,2)
Py(z) * Ps(z,y, 2 Py(z,y,2)
(nil-terminated binary tree)
—

z=nil:emp = Py(z)
x#Enilx e (y,2) % Py(y) « Po(z) = Po(a)
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z:nil:emp

z = (y, )*P?’(Tyv)
P()*P4(T1/,)
Po(z)

4
z = nil : emp
I;énil Py(x)
,2) * Py(z,y)
Pg( )*P1(7)
Po(z)

ey

N



Part IV

Challenges and subtleties

22/ 27



Fvaluating solution quality

e Backtracking search can yield different solutions.

23/ 27



Fvaluating solution quality

e Backtracking search can yield different solutions.

e We can decide whether a predicate is satisfiable

23/ 27



Fvaluating solution quality

e Backtracking search can yield different solutions.

e We can decide whether a predicate is satisfiable

ﬁ J. Brotherston, C. Fuhs, N, Gorogiannis and J. Navarro Perez.
A decision procedure for satisfiability of inductive predicates in
separation logic.

Submitted.

23/ 27



Fvaluating solution quality

e Backtracking search can yield different solutions.

e We can decide whether a predicate is satisfiable

@ J. Brotherston, C. Fuhs, N, Gorogiannis and J. Navarro Perez.
A decision procedure for satisfiability of inductive predicates in
separation logic.

Submitted.

e Comparing predicates via entailment () is not practical.

23/ 27



Fvaluating solution quality

Backtracking search can yield different solutions.

We can decide whether a predicate is satisfiable

@ J. Brotherston, C. Fuhs, N, Gorogiannis and J. Navarro Perez.
A decision procedure for satisfiability of inductive predicates in
separation logic.

Submitted.

Comparing predicates via entailment (I-) is not practical.

Currently we use a simple grading scheme for predicate
quality.

23/ 27



Fvaluating solution quality

Backtracking search can yield different solutions.

We can decide whether a predicate is satisfiable

@ J. Brotherston, C. Fuhs, N, Gorogiannis and J. Navarro Perez.
A decision procedure for satisfiability of inductive predicates in
separation logic.

Submitted.

Comparing predicates via entailment (I-) is not practical.

Currently we use a simple grading scheme for predicate
quality.

We can simplify predicates and replay the proof to improve
quality, sometimes.
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Ezxperimental results

Program LOC Time Depth Quality Term
List traverse 3 20 3 A v
List insert 14 8 7 B v
List copy 12 0 8 B v
List append 10 12 5 B v
Delete last from list 16 12 9 B v
Filter list 21 48 11 C v
Dispose list 5 4 5 A v
Reverse list 7 8 7 A v
Cyclic list traverse 5 4 5 A v
Binary tree search 7 8 4 A v
Binary tree insert 18 4 7 B v
List of lists traverse 7 8 5 B v
Traverse even-length list 4 8 4 A v
Traverse odd-length list 4 4 4 A v
Ternary tree search 10 8 5 A v
Conditional diverge 3 4 3 B X
Traverse list of trees 11 12 6 B v
Traverse tree of lists 17 68 7 A v
Traverse list twice 8 267 9 B v



Problem: wnitial variable assignment

e Consider a local variable assignment y := x at line 0. In
the proof we get

y=z*xPxF1

=T
PxF0 Y
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Problem: wnitial variable assignment

Consider a local variable assignment y := x at line 0. In
the proof we get

y=z*xPxF1
— Y=z
PxF0

The equality y = x might prevent back-links later, so we
have to deal with it somehow.

But there are lots of choices!

Currently our standard approach is to generalise P to
include y, which helps us abduce e.g. cyclic lists.

In principle, we could also use the control flow graph of the
program to help us decide what to do.
25/ 27
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Problem: abstraction

The abstraction problem is inherited from program
analysis in general.

Here it shows up in the need for lemmas:
IT: Fxlist(z) i

r — ytlist(x Cut
:Fxx—yki Y (=) (Cut)

Our tool has a limited abstraction capability, mainly based
on existentially quantifying variables modified by loops.

Lemma speculation is a well known problem in inductive
theorem proving. In our setting, where parts of the lemma
may be undefined, it is harder still!

CYCLIST gives us an entailment prover which could be used
to prove conjectured lemmas,



Thanks for listening!

Get Caber / Cyclist online (source / virtual
machine image):

google “cyclist theorem prover”.

D J. Brotherston and N, Gorogiannis.

Cyclic abduction of inductive safety and termination
preconditions.
Submitted.
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