Reasoning over Permissions Regions in
Concurrent Separation Logic

James Brotherston, Diana Costa, Aquinas Hobor and John
Wickerson

IRIS Day O’Science, Coronavirus Lockdown Edition

Tuesday 7th April, 2020

1/13

Concurrent separation logic (CSL)

Concurrent separation logic (CSL) is based upon the
following concurrency rule:

{A1} Ci{B1} {A2} Ca{B2}
{Al ® Ag} & H (s {Bl ® BQ}

This rule says that concurrent threads behave
compositionally with respect to separation (®) between
their respective memory resources.

However, separation ® typically allows some sharing of
read-only resources between threads, which can be
controlled using fractional permissions.

2/13

Fractional permissions

Fractional permissions are intended to allow the division of
memory into two or more “read-only copies”.

Permissions can be represented e.g. as rationals in the
open interval (0,1]. 1 is the write permission and values in
(0,1) are read-only permissions.

Heaps store a data value and permission at each location.
Heaps can be composed provided they agree where they
overlap; we add the permissions at overlapping locations.

Separation ® denotes the division of a heap using this
composition. E.g., we have

x(»);>5d®x(»);>5dza:»—>d.

3/ 13

Typical CSL proof structure

{z — d}

{(z B d@z S)

{z 25 a4} {223 4}
foo(); bar();
{a:P%Sd*A} {a:(»)—éd*B}

(2R dezde A® B}
{r—d® A® B}

BUT. .. we hit problems when we use permissions to describe
regions of memory and not just pointers.

4/13

The first difficulty

Suppose we define linked list segments using ®:
Isxy =qef (x=yAemp)V (Fz. 2= 2®Iszy) .
Now consider traversal procedure foo(x,y):
foo(x,y) { if x=y then return; else foo([x],y); }
This satisfies the following Hoare triple:

{(Iszy)*?} foolx,y); {(Iszy)*5} .

However, we will have difficulties proving so!

5/ 13

Failed proof attempt

{(szy)"5}
foo(x,y) {
if x=y then return; {(Iszy)""}
else {z#yn(z—z@ls2y)"0}
r#yN(x 2@ (Iszy)0'5)}
foo ([x]) w8 2@ (52y)"0 |
{(z = z@®Is2y)*}
{(Iszy)°5)

} {(|Sl‘y)0'5}

6/ 13

Reason for failure

® The highlighted inference step is not sound:

a:(»)—'5>z®(lszy)0'5 (= 2@ Is2y)0® .

e This is because the pointer and list segment can overlap on
the LHS, but not on the RHS. In general,

A"® B £ (A® B)" .

e But if we use strong separation *, which enforces
disjointness of heaps, to define our list segments, the proof
above goes through (since (A x B)™ = A™ x B™).

7/ 13

The second difficulty

The triple {Iszy} foo(x,y); || foo(x,y); {lsxy} is correct,
but again the proof fails:

{Iszy}
{(Isa:) ® (Isz y)0'5}

{(Isazy)o'5} {(sty)0'5}

foo(x,y); foo(x,y);

{(Isa:y)o'5} {(Isa:y)o'5}

{(szy)* @ (Iszy)°}

Y% {lszy}

8/ 13

Reason for second failure

® The highlighted inference step is not sound:

(Iszy)*S @ (Iszy)>® KElszy .

® This is because the list segments on the LHS might be
(partially) non-overlapping. In general,

A0'5 ®A0'5 l;é A

® When splitting the list segment Isx y, we lost the info that
the two formulas (Isx y)%5 are copies of the same region.

9/ 13

Proposed solution: nominal labels

e We introduce nominal labels (from hybrid logic), where a
nominal « is interpreted as denoting a unique heap.

® Any formula of the form o A A then obeys the principle
(aNA)? ®(aANA)™=(aNA)TET
where @ is addition on permissions.

® Thus we can repair the faulty CSL proof above by replacing
every instance of Isxy by a Alszy (and adding an initial
step in which we introduce the fresh label «).

10/ 13

What’s in the paper?

We define an assertion language including both weak ® and
strong * separating conjunctions, and nominal labels «.

We also include hybrid logic’s jump modality @, A,
meaning A is true at «, which is useful in treating more
complex sharing examples.

We formally establish the needed principles, including

AT x BT
(a A A)TE™

(Ax B)"
(aNA)T ® (anNA)T

Finally we show how our assertion language can be used in
CSL to verify various concurrent programs with sharing.

11/ 13

Directions for future work

® Implementation and automation
® Specification inference and biabduction

® [dentify tractable fragments

12/ 13

Thanks for listening!

@ James Brotherston, Diana Costa, Aquinas Hobor and John
Wickerson.
Reasoning over Permissions Regions in Concurrent
Separation Logic.
Accepted to CAV 2020.

13/ 13

