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Introduction

Previously:

e we showed that the Hilbert system for BBI is sound and
complete w.r.t. validity in an associated class of Kripke
models;

e we reformulated the Hilbert system as an analytic,
cut-eliminating display calculus.

You might think that BBI is therefore decidable: given a
formula A, just conduct an exhaustive search for - A in the
display calculus.

But, actually, it isn’t. That’s today’s subject.
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BBI, proof-theoretically

Recall:

Provability in BBI is given by extending a Hilbert system for
propositional classical logic by

AxBFBx A Ax(BxC)F (A% B)xC
AFAxI AxIH A

Al*Agl—Bl*BQ A+FB-—«C AxB+FC
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BBI, semantically (1)

Recall:

A BBI-model is given by (W, o, E), where
e W is aset (of “worlds”),

e o is a binary function W x W — P(W); we extend o to
PW) x P(W)— P(W) by

Wi o Wa =det U, ewy s, W1 © W2

e o is commutative and associative;

the set of units £ C W satisfies wo E = {w} for all w € W.

A valuation for BBI-model M = (W, o, E) is a function p from

propositional variables to P(W).
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BBI, semantically (2)

Given M, p, and w € W, we define the forcing relation w =, A
by induction on formula A:

w =, P
wlk, A— B

& we p(P)
& w =, Aimplies w =, B

wk,l & wekE
wl=, AxB w € wy owy and wy =, A and ws =, B
wk, A—=B Vw',w” e Woif w” € wow’ and w' =, A
then w” |=, B

T3

Ais valid in M iff w }=, A for all p and w € W.
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Undecidability strategy

e There is basically one universal strategy for showing things
undecidable: by reduction from some problem already
known undecidable!
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Undecidability strategy

There is basically one universal strategy for showing things
undecidable: by reduction from some problem already
known undecidable!

That is, we show that if we could decide validity of
BBI-formulas, then we could decide some other
undecidable problem.

Classic undecidable problem: the halting problem, as
famously considered by Turing.

Turing machines are not very convenient for our purposes
(why not?), so we shall instead consider the halting
problem for two counter Minsky machines.
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Minsky machines

A Minsky machine M with counters c1, ¢o is given by a finite set
of labelled instructions of the following types, where k € {1,2}:
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Minsky machines

A Minsky machine M with counters c1, ¢o is given by a finite set
of labelled instructions of the following types, where k € {1,2}:

L;: c++; goto Lj; “Increment ¢ (and jump)”
Li: c,——; goto Lj; “decrement ¢, (and jump)”
L;:if ¢, =0 goto Lj; “zero-test ¢, (and jump)”
L;:goto Lj; “jump”

Configurations of M have the form (L;, ni,ng). We write
(Liyna,ma) b if (L, na,m2) ~3, (Lo, 0,0).
We introduce special labels L_1, L_s with instructions:

L_1:co——;goto L_q; L_i:goto Ly;
L_9:c1——;goto L_o; L_5:goto Ly;

whence (L_g, n1, no)ar iff ng, = 0.
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Outline proof of undecidability

Theorem
1t is undecidable whether a given Minsky machine terminates
from a given configuration.
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Outline proof of undecidability

Theorem
1t is undecidable whether a given Minsky machine terminates

from a given configuration.

Idea: given a machine M and configuration C, we encode M, C
as a formula Fjs,c of BBI such that

M terminates from C' & Fj ¢ is valid .

Then, if we could decide validity of formulas in BBI, we could
decide the halting problem for Minsky machines, contradiction!
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Encoding configurations (1)

First, for each label L; we have a propositional variable ;.
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Encoding configurations (1)

First, for each label L; we have a propositional variable [;.

We also pick two propositional variables p;, ps to represent the
counters ci, ca.

Then, a configuration (L;,n1,n2) will be represented as:

n n9
l; *p11 * Po

"
where p;! denotes the formula py * {}k aaa Pk, With pg =1

~~
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Encoding configurations (2)

Now we pick a new propositional variable b and write

-A =def A-—xb
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Encoding configurations (2)

Now we pick a new propositional variable b and write

—A =def A—*b

b will be interpreted as “all terminating configurations of the
machine”.

So = A should be read as “whenever I add A to my current
state, I get a terminating configuration”.
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Restricted x-contraction

Contraction does not hold for *:

AW Ax A
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Restricted x-contraction

Contraction does not hold for x:
A Ax A
However, a restricted form of contraction does hold:
INAF{IANA)«(INA)

Easy to see semantically, but quite hard to derive!
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Encoding machines in BBI

We code each instruction v of a machine M as a formula ()
of BBI:
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Encoding machines in BBI

We code each instruction v of a machine M as a formula ()
of BBI:

L;: c++; goto Lj;
L;: c,——;goto Lj;

(= (lj * pr) —*=1;)

=
= (—lj Hlé—(li *pk))
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Encoding machines in BBI

We code each instruction v of a machine M as a formula ()
of BBI:

L;: cj++; goto Lj; (= (% pr) —*=1y)
L;: c,——; goto Lj; (=1; = =(l; * p))
L;:if ¢, =0 goto Lj; = (- (lj Vi) —=1;)

=
=
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Encoding machines in BBI

We code each instruction v of a machine M as a formula ()
of BBI:

Lizeyp++;goto Lj; = (=(lj *pr) >+ -1i)
Lizcy——;goto Lj; = (=1j == (l xpg))
L;:if ¢, =0 goto Lj; = (- (lj Vi) —=1;)
L;:goto Lj; = (=l —=1;)
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Encoding machines in BBI

We code each instruction v of a machine M as a formula ()
of BBI:

Li:cy++;g80to Lj; = ( i
L;: c,——;goto Lj; = (_lj Hlf‘(li Pk)
Li:if ¢;=0goto L;j; = (
L;:goto Lj; =

We code a whole machine M = {v1,...,v%} as:

t

R(M) =TA N\ k(1)

i=1
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Encoding machines in BBI

We code each instruction v of a machine M as a formula ()
of BBI:

L;: cp++;goto Lj; = i
Li: Cp,——; goto Lj; = (—lj —k —(li pk)
Li:if ¢;=0goto L;j; = (
L;:goto Lj; =

We code a whole machine M = {v1,...,v%} as:

t

R(M) =1A J\ K(7)

i=1
Finally, we code termination from (Lg,0,0) as (I A=lp).
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Master encoding

Putting everything together, the formula Fjs ¢ encoding
termination of M from C will be

K(M) * 1« py*t « ph? (I A=lp) F b
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Master encoding

Putting everything together, the formula Fjs ¢ encoding
termination of M from C will be

K(M) * 1« py*t « ph? (I A=lp) F b

Plan of proof:

M terminates from C'

Fm,c provable (Theorem 1)

Fu,c valid in all models (soundness)

Fu,c valid in a specially chosen model and valuation
M terminates from C (Theorem 2)

R
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First theorem

Theorem
Suppose (L;,n1,n2)rr. Then the following is derivable in BBI:

K(M) * 1 % pi* * ph? (I A=lp) F b
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First theorem

Theorem
Suppose (L;,n1,n2)rr. Then the following is derivable in BBI:

K(M) * 1 % pi* * ph? (I A=lp) F b

We actually derive the stronger
K(M) * 1 % pi™* * ph? F==1

Proof is by induction on the length of the computation
(Li,n1,n2)dpr. Restricted x-contraction is used to duplicate
instructions from (M) as needed.
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Choosing a model

Given that Fj ¢ is provable, it is valid by soundness.
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Choosing a model

Given that Fj ¢ is provable, it is valid by soundness.

It’s enough to show that M terminates from C' given only that
Fur,c is valid in some model of our choice, under some
valuation of our choice.

We use the RAM-domain model (D, o, {eg}), where:
e D is the set of all finite subsets of N;

e o is union of disjoint sets, undefined otherwise;

e ¢q is the empty set.

15/ 21



Second main theorem

Theorem
(Li,n1,no)lpr whenever the following sequent is valid:

K(M) * l; % py*t * ph? = (I A=lp) F b
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Second main theorem

Theorem
(Li,n1,no)lpr whenever the following sequent is valid:

K(M) * l; % py*t * ph? = (I A=lp) F b
Proof outline. In our RAM-domain model (D, o, {eg}), we have
for any p:

KR(M)*l; *pi* s« ph? % (I N=1y) E=p b
We want to pick p with eg |=, k(M) and eg =, I A=y to get:

l; *p?l *pg"’ ):p b

and infer (L;,ny1,na){s.
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[pil,: The (second) edge of disaster

We intend that [; * p* * py? should encode configuration
(Li,n1,m2). Thus d |=, p;* should determine the number ny.
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[ptll,: The (second) edge of disaster

We intend that [; * p* * py? should encode configuration
(Li,n1,m2). Thus d |=, p;* should determine the number ny.

But composition is disjoint so that, e.g., if we take p(pg) = {h}
for a nonempty heap h, then p(p%) = p(pk * px) is empty!

In general, whenever p(pg) is finite we must have:

[p]p = [Pk,

for sufficiently large n and m. So we need an infinite valuation.
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Choosing a valuation
We choose a valuation p for (D, o, {ep}) as follows:

plp1) = {{2"}[meN}
plp2) = {{3"}[meN}
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Choosing a valuation

We choose a valuation p for (D, o, {ep}) as follows:

plp1) = {{2"}[meN}
plp2) = {{3"}[meN}
plli) = {{6"} [m e N}

where 9; is a fresh prime number for each propositional variable

l—9,l-1,lo,11, ...
Finally, we define:

PO) = UL, ny,noyun (41 d Fp lixpit +p3?}

so p(b) is the set of interpretations of all terminating
configurations.
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Needed lemma

Lemma
For our chosen model and valuation p,

€o ):pI/\—lo .

This is easy.
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Needed lemma

Lemma
For our chosen model and valuation p,

€0FpIA—h.

This is easy.

Lemma
eo =p k(M).

We have to show eq |=, x(7) for each possible instruction ~.

This involves wrangling with the semantics of — and with the
details of our valuation.
19/ 21



Proof of Lemma 2

If k(M) % l; % pi* * py? * (IA=1p) - b is valid in (D, o, {eg})
then:
(M)l *p1t xpy? « (IA=1p) =, b
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l; *p?l *ng x (IA=1p) ):p b
Since ey =, I A =1y (because (Lg,0,0)dnr), we get:
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Proof of Lemma 2

If k(M) % l; % pi* * py? * (IA=1p) - b is valid in (D, o, {eg})
then:
(M)l *p1t xpy? « (IA=1p) =, b

Since ey =, k(M) we get:
Lixpit *py? « (IN=1lp) F=p b
Since ey =, I A =1y (because (Lg,0,0)dnr), we get:
Lixpl* *py? =, b

Since d =, l; * pi'* * py? uniquely determines n; and ny we
conclude (L;,ny,no)dly from definition of p(b).
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