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Introduction

Previously:

• we showed that the Hilbert system for BBI is sound and
complete w.r.t. validity in an associated class of Kripke
models;

• we reformulated the Hilbert system as an analytic,
cut-eliminating display calculus.

You might think that BBI is therefore decidable: given a
formula A, just conduct an exhaustive search for ` A in the
display calculus.

But, actually, it isn’t. That’s today’s subject.
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BBI, proof-theoretically

Recall:

Provability in BBI is given by extending a Hilbert system for
propositional classical logic by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B —∗ C

A ` B —∗ C

A ∗B ` C
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BBI, semantically (1)

Recall:

A BBI-model is given by 〈W, ◦, E〉, where

• W is a set (of “worlds”),

• ◦ is a binary function W ×W → P(W ); we extend ◦ to
P(W )× P(W )→ P(W ) by

W1 ◦W2 =def
⋃
w1∈W1,w2∈W2

w1 ◦ w2

• ◦ is commutative and associative;

• the set of units E ⊆W satisfies w ◦E = {w} for all w ∈W .

A valuation for BBI-model M = 〈W, ◦, E〉 is a function ρ from
propositional variables to P(W ).
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BBI, semantically (2)

Given M , ρ, and w ∈W , we define the forcing relation w |=ρ A
by induction on formula A:

w |=ρ P ⇔ w ∈ ρ(P )
w |=ρ A→ B ⇔ w |=ρ A implies w |=ρ B

...
w |=ρ I ⇔ w ∈ E

w |=ρ A ∗B ⇔ w ∈ w1 ◦ w2 and w1 |=ρ A and w2 |=ρ B
w |=ρ A —∗ B ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and w′ |=ρ A

then w′′ |=ρ B

A is valid in M iff w |=ρ A for all ρ and w ∈W .
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Undecidability strategy

• There is basically one universal strategy for showing things
undecidable: by reduction from some problem already
known undecidable!

• That is, we show that if we could decide validity of
BBI-formulas, then we could decide some other
undecidable problem.

• Classic undecidable problem: the halting problem, as
famously considered by Turing.

• Turing machines are not very convenient for our purposes
(why not?), so we shall instead consider the halting
problem for two counter Minsky machines.
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Minsky machines

A Minsky machine M with counters c1, c2 is given by a finite set
of labelled instructions of the following types, where k ∈ {1, 2}:

Li: ck++;goto Lj ; “increment ck (and jump)”
Li: ck−−;goto Lj ; “decrement ck (and jump)”
Li: if ck=0 goto Lj ; “zero-test ck (and jump)”
Li:goto Lj ; “jump”

Configurations of M have the form 〈Li, n1, n2〉. We write
〈Li, n1, n2〉⇓M if 〈Li, n1, n2〉 ∗M 〈L0, 0, 0〉.
We introduce special labels L−1, L−2 with instructions:

L−1: c2−−;goto L−1; L−1:goto L0;
L−2: c1−−;goto L−2; L−2:goto L0;

whence 〈L−k, n1, n2〉⇓M iff nk = 0.
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Outline proof of undecidability

Theorem
It is undecidable whether a given Minsky machine terminates
from a given configuration.

Idea: given a machine M and configuration C, we encode M,C
as a formula FM,C of BBI such that

M terminates from C ⇔ FM,C is valid .

Then, if we could decide validity of formulas in BBI, we could
decide the halting problem for Minsky machines, contradiction!
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Encoding configurations (1)

First, for each label Li we have a propositional variable li.

We also pick two propositional variables p1, p2 to represent the
counters c1, c2.

Then, a configuration 〈Li, n1, n2〉 will be represented as:

li ∗ pn1
1 ∗ p

n2
2

where pnk denotes the formula
n times

pk ∗ pk ∗ · · · ∗ pk︸ ︷︷ ︸, with p0
k = I.
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Encoding configurations (2)

Now we pick a new propositional variable b and write

A =def A —∗ b

b will be interpreted as “all terminating configurations of the
machine”.

So A should be read as “whenever I add A to my current
state, I get a terminating configuration”.
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Restricted ∗-contraction

Contraction does not hold for ∗:

A 6` A ∗A

However, a restricted form of contraction does hold:

I ∧A ` (I ∧A) ∗ (I ∧A)

Easy to see semantically, but quite hard to derive!
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Encoding machines in BBI

We code each instruction γ of a machine M as a formula κ(γ)
of BBI:

Li: ck++;goto Lj ; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj ; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj ; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj ; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧
i=1

κ(γi)

Finally, we code termination from 〈L0, 0, 0〉 as (I ∧ l0).

12/ 21



Encoding machines in BBI

We code each instruction γ of a machine M as a formula κ(γ)
of BBI:

Li: ck++;goto Lj ; ⇒ ( (lj ∗ pk) —∗ li)

Li: ck−−;goto Lj ; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj ; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj ; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧
i=1

κ(γi)

Finally, we code termination from 〈L0, 0, 0〉 as (I ∧ l0).

12/ 21



Encoding machines in BBI

We code each instruction γ of a machine M as a formula κ(γ)
of BBI:

Li: ck++;goto Lj ; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj ; ⇒ ( lj —∗ (li ∗ pk))

Li: if ck=0 goto Lj ; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj ; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧
i=1

κ(γi)

Finally, we code termination from 〈L0, 0, 0〉 as (I ∧ l0).

12/ 21



Encoding machines in BBI

We code each instruction γ of a machine M as a formula κ(γ)
of BBI:

Li: ck++;goto Lj ; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj ; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj ; ⇒ ( (lj ∨ l−k) —∗ li)

Li:goto Lj ; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧
i=1

κ(γi)

Finally, we code termination from 〈L0, 0, 0〉 as (I ∧ l0).

12/ 21



Encoding machines in BBI

We code each instruction γ of a machine M as a formula κ(γ)
of BBI:

Li: ck++;goto Lj ; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj ; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj ; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj ; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧
i=1

κ(γi)

Finally, we code termination from 〈L0, 0, 0〉 as (I ∧ l0).

12/ 21



Encoding machines in BBI

We code each instruction γ of a machine M as a formula κ(γ)
of BBI:

Li: ck++;goto Lj ; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj ; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj ; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj ; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧
i=1

κ(γi)

Finally, we code termination from 〈L0, 0, 0〉 as (I ∧ l0).

12/ 21



Encoding machines in BBI

We code each instruction γ of a machine M as a formula κ(γ)
of BBI:

Li: ck++;goto Lj ; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj ; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj ; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj ; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧
i=1

κ(γi)

Finally, we code termination from 〈L0, 0, 0〉 as (I ∧ l0).

12/ 21



Master encoding

Putting everything together, the formula FM,C encoding
termination of M from C will be

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) ` b

Plan of proof:
M terminates from C

⇒ FM,C provable (Theorem 1)
⇒ FM,C valid in all models (soundness)
⇒ FM,C valid in a specially chosen model and valuation
⇒ M terminates from C (Theorem 2)
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First theorem

Theorem
Suppose 〈Li, n1, n2〉⇓M . Then the following is derivable in BBI:

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) ` b

We actually derive the stronger

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ` l0

Proof is by induction on the length of the computation
〈Li, n1, n2〉⇓M . Restricted ∗-contraction is used to duplicate
instructions from κ(M) as needed.
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Choosing a model

Given that FM,C is provable, it is valid by soundness.

It’s enough to show that M terminates from C given only that
FM,C is valid in some model of our choice, under some
valuation of our choice.

We use the RAM-domain model 〈D, ◦, {e0}〉, where:

• D is the set of all finite subsets of N;

• ◦ is union of disjoint sets, undefined otherwise;

• e0 is the empty set.
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Second main theorem

Theorem
〈Li, n1, n2〉⇓M whenever the following sequent is valid:

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) ` b

Proof outline. In our RAM-domain model 〈D, ◦, {e0}〉, we have
for any ρ:

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) |=ρ b

We want to pick ρ with e0 |=ρ κ(M) and e0 |=ρ I ∧ l0 to get:

li ∗ pn1
1 ∗ p

n2
2 |=ρ b

and infer 〈Li, n1, n2〉⇓M .

16/ 21



Second main theorem

Theorem
〈Li, n1, n2〉⇓M whenever the following sequent is valid:

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) ` b

Proof outline. In our RAM-domain model 〈D, ◦, {e0}〉, we have
for any ρ:

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) |=ρ b

We want to pick ρ with e0 |=ρ κ(M) and e0 |=ρ I ∧ l0 to get:

li ∗ pn1
1 ∗ p

n2
2 |=ρ b

and infer 〈Li, n1, n2〉⇓M .

16/ 21



Second main theorem

Theorem
〈Li, n1, n2〉⇓M whenever the following sequent is valid:

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) ` b

Proof outline. In our RAM-domain model 〈D, ◦, {e0}〉, we have
for any ρ:

κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) |=ρ b

We want to pick ρ with e0 |=ρ κ(M) and e0 |=ρ I ∧ l0 to get:

li ∗ pn1
1 ∗ p

n2
2 |=ρ b

and infer 〈Li, n1, n2〉⇓M .
16/ 21



JpnkKρ: The (second) edge of disaster

We intend that li ∗ pn1
1 ∗ p

n2
2 should encode configuration

〈Li, n1, n2〉. Thus d |=ρ p
nk
k should determine the number nk.

But composition is disjoint so that, e.g., if we take ρ(pk) = {h}
for a nonempty heap h, then ρ(p2

k) = ρ(pk ∗ pk) is empty!

In general, whenever ρ(pk) is finite we must have:

JpnkKρ = Jpmk Kρ

for sufficiently large n and m. So we need an infinite valuation.
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Choosing a valuation

We choose a valuation ρ for 〈D, ◦, {e0}〉 as follows:

ρ(p1) = {{2m} | m ∈ N}
ρ(p2) = {{3m} | m ∈ N}

ρ(li) = {{δmi } | m ∈ N}

where δi is a fresh prime number for each propositional variable
l−2, l−1, l0, l1, . . .
Finally, we define:

ρ(b) =
⋃
〈Li, n1, n2〉⇓M {d | d |=ρ li ∗ pn1

1 ∗ p
n2
2 }

so ρ(b) is the set of interpretations of all terminating
configurations.
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Needed lemma

Lemma
For our chosen model and valuation ρ,

e0 |=ρ I ∧ l0 .

This is easy.

Lemma

e0 |=ρ κ(M).

We have to show e0 |=ρ κ(γ) for each possible instruction γ.

This involves wrangling with the semantics of —∗ and with the
details of our valuation.
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Proof of Lemma 2

If κ(M) ∗ li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) ` b is valid in 〈D, ◦, {e0}〉

then:
κ(M) ∗ li ∗ pn1

1 ∗ p
n2
2 ∗ (I ∧ l0) |=ρ b

Since e0 |=ρ κ(M) we get:

li ∗ pn1
1 ∗ p

n2
2 ∗ (I ∧ l0) |=ρ b

Since e0 |=ρ I ∧ l0 (because 〈L0, 0, 0〉⇓M ), we get:

li ∗ pn1
1 ∗ p

n2
2 |=ρ b

Since d |=ρ li ∗ pn1
1 ∗ p

n2
2 uniquely determines n1 and n2 we

conclude 〈Li, n1, n2〉⇓M from definition of ρ(b).
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